高级RAG:揭秘PDF解析

本文探讨了解析PDF文档的挑战,包括基于规则、深度学习和多模态大模型的方法。深度学习模型能准确识别布局,但处理耗时;多模态模型在提取关键信息方面表现优异。提出了解决双列PDF和提取多级标题的算法,强调了深度学习和多模态方法在解析非结构化数据中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:advanced-rag-02-unveiling-pdf-parsing

2024 年 2 月 3 日

附加内容:揭秘PDF解析:如何从科学pdf论文中提取公式

对于RAG,从文档中提取信息是一个不可避免的场景。确保从源头提取内容的有效性对于提高最终输出的质量至关重要。重要的是不要低估这个过程。在实现RAG时,解析过程中的信息提取不佳可能导致对PDF文件中包含的信息的理解和利用受到限制。

Parsing过程在RAG中的位置如图1所示:

img

图1:通过过程在RAG中的位置(红框)。

在实际工作中,非结构化数据要比结构化数据丰富得多。如果这些海量的数据不能被解析,它们的巨大价值就无法实现。在非结构化数据中,PDF文档占多数。有效地处理PDF文档还可以极大地帮助管理其他类型的非结构化文档

本文主要介绍解析PDF文件的方法。它提供了有效解析PDF文档和提取尽可能多的有用信息的算法和建议。

解析PDF的挑战

PDF文档是非结构化文档的代表,但是,从PDF文档中提取信息是一个具有挑战性的过程。

与其说PDF是一种数据格式,不如将其描述为打印指令的集合更为准确。PDF文件由一系列指令组成,这些指令指示PDF阅读器或打印机在屏幕或纸张上显示符号的位置和方式。这与HTML和docx等文件格式形成对比,后者使用<p><w:p>、<table> <w:tbl>>来组织不同的逻辑结构,如图2所示:

img

图2:Html与PDF。

解析PDF文档的挑战在于准确地提取整个页面的布局,并将内容(包括表格、标题、段落和图像)翻译成文档的文本表示形式。该过程涉及处理文本提取、图像识别和表中行-列关系的混淆中的不准确性。

如何解析PDF文档

  • 基于规则的方法:根据文件的组织特征确定每个部分的风格和内容。然而,这种方法不是很通用,因为pdf有许多类型和布局,因此不可能用预定义的规则覆盖它们。
  • 基于深度学习模型的方法:如目前流行的结合物体检测和OCR模型的解决方案。
  • 基于多模态大模型传递复杂结构或提取pdf中的关键信息。

基于规则的方法

最具代表性的工具之一是pypdf,它是一种广泛使用的基于规则的解析器。它是LangchainLlamaIndex中解析PDF文件的标准方法。

下面是尝试使用pypdf解析“(Attention Is All You Need)”论文的第6页。原始页面如图3所示。

img

图3:“Attention Is All You Need”论文的原始第6页。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值