提示词微调:LLMs适应新任务的强大技术

提示词微调是通过训练少量参数使大型语言模型(MLM)适应新任务的技术,具有高效、灵活和可解释性的优点。文章探讨了提示设计、过拟合和可扩展性的挑战,并提出了简化提示和使用软提示等解决方案。PEFT和P-tuning作为优化技术,旨在降低微调成本,增强LLM的定制能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:Prompt Tuning: A Powerful Technique for Adapting LLMs to New Tasks

2023 年 10 月 18 日

提示词微调是一种通过训练少量提示参数来使大型语言模型 (LLM) 适应新任务的技术。提示文本添加在输入文本之前,以指导LLM生成所需的输出。由于其高效性和灵活性,它在自然语言处理领域获得了广泛的关注。

来源

什么是提示词微调?

提示词微调是通过训练一小组称为提示的参数来使LLM适应新任务的过程。这些提示被添加到输入文本之前,以指导LLM生成所需的输出。

提示词微调的好处

1. 高效

与微调整个 LLM 相比,提示词微调提供了更有效的方法。它只需要训练少量的提示参数,从而更快地适应新任务。

2. 灵活

提示词微调可应用于各个领域的广泛任务,包括自然语言处理、图像分类和代码生成。这种灵活性使得快速调整成为适应法学硕士的通用技术。

3.可解释性

通过提示词微调,可以检查提示参数以了解如何引导 LLM 生成所需的输出。这种可解释性为模型的决策过程提供了宝贵的见解。

提示词微调的最大挑战

1. 设计复杂的提示

设计有效的提示可能具有挑战性,尤其是对于复杂的任务。它需要仔细考虑语言、结构和上下文以确保最佳性能。

想象一下,您在一家专注于糖尿病和肥胖等代谢疾病的制药公司工作。您希望使用语言模型来收集特定于您的工作的信息或见解,但不希望获得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值