深入探讨Agentic RAG(A-RAG)

原文地址:Agentic RAG: Context-Augmented OpenAI Agents

2024 年 3 月 14 日

原文地址:Deep Dive into Agentic Retrieval Augmented Generation (A-RAG)

2024 年 3 月 4 日

概述

检索增强生成(RAG),它首先将查询输入到 RAG 管道中,该管道执行检索、重新排名、综合并返回响应。

​​

本文探讨了如何通过增加代理层来提高响应生成代理(RAG)的效率和准确性。文章讨论了从概念到学习再到实施的必要性。文章使用了LlamaIndex实现了代理RAG,该框架具有RAG的最佳抽象,这些原理可以用于在任何其他框架中实现代理RAG。

为什么选择 A-RAG

当我们使用推理来确定要采取哪些行动以及采取这些行动的顺序时,需要人工智能代理。本质上,我们直接使用代理而不是LLM来完成一组需要规划、多步骤推理、工具使用和/或随着时间的推移学习的任务。

Agency : The ability to take action or to choose what action to take

在 RAG 的背景下,我们可以在选择 RAG 管道之前插入代理来增强推理,在 RAG 管道内进行检索或重新排序,最后在发送响应之前进行合成。通过自动执行重要 RAG 用例所需的复杂工作流程和决策,可以在很大程度上改进 RAG。

​​

A-RAG 如何使用

RAG 上下文中代理的使用模式包括以下内容:

使用现有的 RAG 管道作为代理的工具

使用代理本身作为 RAG 工具

使用代理在查询时使用提供的上下文从 RAG(向量索引)检索工具

使用代理对一组现有工具进行查询规划

使用代理从使用 RAG 从工具池中检索的候选工具中选择一个工具

还可以混合搭配上述使用模式来实现复杂的 RAG 应用程序。

RAG代理可以根据功能进一步分类。它们可用于路由、一次性查询规划、工具使用、推理 + 行动 (ReAct) 以及动态规划和执行。这些范围从简单、低成本和低延迟到复杂、高成本和高延迟。

路由代理

路由代理本质上使用 LLM 来选择要选择的下游 RAG

### 关于 Agentic RAG 的 GitHub 项目资源 Agentic Retrieval-Augmented Generation (Agentic RAG) 是一种结合了自主智能体与检索增强生成的技术,旨在解决传统 RAG 系统的局限性,并在动态决策、迭代推理和协作工作流方面表现出显著优势[^2]。以下是一些可能与 Agentic RAG 相关的 GitHub 项目或资源: 1. **官方调研论文关联的 GitHub 仓库** 根据引用内容,Aditi Singh 等人在其论文中提供了 Agentic RAG 的详细算法实现和讨论[^2]。可以访问以下 GitHub 仓库以获取相关代码和资源: ```plaintext https://github.com/asinghcsu/AgenticRAG-Survey ``` 2. **CodeRAG 的实现与扩展** CodeRAG 是一种基于智能 RAG 的代码生成工具,在 DevEval 数据集上的表现非常出色[^1]。虽然 CodeRAG 并未明确提及 Agentic RAG,但其智能 RAG 类型可能与 Agentic RAG 的某些特性有所重叠。可以参考以下仓库以了解类似的实现: ```plaintext https://github.com/example/coderag # 示例链接,请根据实际需求搜索 ``` 3. **通用 RAG 实现与扩展** 由于 Agentic RAGRAG 技术的一种高级形式,因此可以参考一些通用的 RAG 实现项目,并尝试从中寻找 Agentic RAG 的灵感或扩展: ```plaintext https://github.com/facebookresearch/rag ``` 4. **自主智能体与 RAG 结合的研究** 如果需要更深入地研究自主智能体与 RAG 的结合方式,可以参考以下 GitHub 项目: ```plaintext https://github.com/deepmind/agent-based-ml ``` 5. **社区贡献与第三方实现** GitHub 上可能存在由社区开发者贡献的 Agentic RAG 实现或相关资源。可以通过以下关键词进行搜索: - `Agentic RAG` - `Retrieval-Augmented Generation with Agents` - `Agent-based RAG` 以下是示例搜索代码块: ```python import webbrowser # 打开 GitHub 搜索页面 search_url = "https://github.com/search?q=Agentic+RAG" webbrowser.open(search_url) ``` ### 注意事项 在查找相关资源时,需注意项目的更新频率、文档完整性以及是否提供详细的实现说明。此外,部分项目可能仍处于实验阶段,建议结合具体需求进行评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值