集成ShardingSphere实现分库分表

     在Spring Boot项目中集成ShardingSphere实现分库分表,可以帮助你轻松实现数据库的水平拆分。ShardingSphere是一个开源的分布式数据库中间件,支持分库分表、读写分离、分布式事务等功能。可以按照以下步骤进行配置和实现。以下是详细的配置和说明:

1. 引入依赖

        在pom.xml中添加ShardingSphere和数据库连接池的依赖。注意,ShardingSphere已经内置了数据源管理功能,因此不需要额外引入druid-spring-boot-starter,而是直接使用druid。

 <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <version>2.5.3</version>
            <exclusions>
                <exclusion>
                    <artifactId>snakeyaml</artifactId>
                    <groupId>org.yaml</groupId>
                </exclusion>
            </exclusions>
        </dependency>
 
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.3.3</version>
            <exclusions>
                <exclusion>
                    <groupId>org.springframework</groupId>
                    <artifactId>spring-core</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
 
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.32</version>
        </dependency>
 
 
        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
            <version>5.2.1</version>
            <exclusions>
                <exclusion>
                    <artifactId>snakeyaml</artifactId>
                    <groupId>org.yaml</groupId>
                </exclusion>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-api</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
 
 
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
            <version>2.5.3</version>
        </dependency>
 
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.3.3</version>
        </dependency>
 
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.28</version>
        </dependency>
 
        <dependency>
            <groupId>org.yaml</groupId>
            <artifactId>snakeyaml</artifactId>
            <version>1.33</version>
        </dependency>
 
        <!--引入shardingJDBC后,就不要直接使用druid-sprint-boot-starter依赖了。
        因为这个依赖会在Spring容器中注入一个DataSource,这样再要使用ShardingSphere注入DataSource就会产生冲突了。-->
        <!--<dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>1.1.20</version>
        </dependency>-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.1.20</version>
        </dependency>
 
    </dependencies>

2. 配置数据源和分库分表规则

        在application.yml中配置数据源和分库分表规则。以下是一个示例配置:

spring:
  shardingsphere:
    datasource:
      names: db0,db1
      db0:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://localhost:3306/game0?useUnicode=true&characterEncoding=utf8&useSSL=true&serverTimezone=GMT%2B8
        username: root
        password: 123456
      db1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://localhost:3306/game1?useUnicode=true&characterEncoding=utf8&useSSL=true&serverTimezone=GMT%2B8
        username: root
        password: 123456
    rules:
      sharding:
        tables:
          t_order:
            actual-data-nodes: db$->{0..1}.t_order_$->{1..2}
            key-generate-strategy:
              column: id
              key-generator-name: snowflake
            database-strategy:
              standard:
                sharding-column: user_id
                sharding-algorithm-name: database_inline
            table-strategy:
              standard:
                sharding-column: id
                sharding-algorithm-name: table_inline
        sharding-algorithms:
          database_inline:
            type: INLINE
            props:
              algorithm-expression: db$->{user_id % 2}
          table_inline:
            type: INLINE
            props:
              algorithm-expression: t_order_${id % 2 + 1}
              allow-range-query-with-inline-sharding: true
        key-generators:
          snowflake:
            type: SNOWFLAKE
    props:
      sql-show: true


mybatis-plus:
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

3.配置说明

  •  数据源配置

            datasource.names 定义了两个数据源 db0 和 db1。分别指向 game0game1数据库。

  •  分片规则配置
    • t_order 表被配置为分片表

    • actual-data-nodes:定义实际的数据节点,db$->{0..1}.t_order_$->{0..1}表示:数据分布在db0db1两个库中,每个库中有 t_order_1 和 t_order_2 两张表。

    • key-generate-strategy:定义主键生成策略,使用 Snowflake 算法生成分布式主键 ID。

    • database-strategy:定义分库策略,根据user_id分库,使用 database_inline 算法。

    • table-strategy:定义分表策略,根据id分表,使用table_inline算法。

  •  分片算法配置
    • database_inline

      使用 INLINE 表达式分库,根据 user_id%2 的值决定数据落在 db0 还是 db1。例如:user_id%2 == 0 → db0,user_id%2 == 1 → db1。
    • table_inline

      使用 INLINE 表达式分表,根据 id%2+1 的值决定数据落在 t_order_1 还是 t_order_2。例如:id%2+1 == 2 → t_order_2id%2+1 == 1 → t_order_1。
    • allow-range-query-with-inline-sharding:true 允许范围查询(如 BETWEEN>< 等)。

4.ShardingPhere核心概念 

4.1 垂直分片和水平分片

     垂直分片表示按照业务维度将不同的表拆分到不同的库中。减少每个数据库的数据量以及客户端的连接数,提高查询效率。

    水平分片:表示按照数据纬度,将原本存在同一张表中的数据,拆分到多张子表当中。

4.2 虚拟库

        ShardingSphere的核心就是提供一个具备分库分表功能的虚拟库,他是一个
ShardingSphereDatasource实例。应用程序只需要像操作单数据源一样访问这ShardingSphereDatasource即可。

4.3 真实库

     实际保存数据的数据库。这些数据库都被包含在ShardingSphereDatasource实例当中,由
ShardingSphere决定未来需要使用哪个真实库。

4.4 逻辑表

      应用程序直接操作的逻辑表。

4.5 真实表

        实际保存数据的表。这些真实表与逻辑表表名不需要一致,但是需要有相同的表结构,可以分布在不同的真实库中。

4.6 分布式主键生成算法

        给逻辑表生成唯一主键。由于逻辑表的数据是分布在多个真实表当中的,所有单表的索引就无法保证逻辑表的ID唯一性。ShardingSphere集成了几种常见的基于单机生成的分布式主键生成器。比如SNOWFLAKE雪花算法可以生成单调递增的long类型的数字主键。

4.7 分片策略

        表示逻辑表要如何分配到真实库和真实表当中,分为分库策略分表策略两个部分。分片策略由分片键分片算法组成。分片键是进行数据水平拆分的关键字段,分片算法表示根据分片键如何寻找对应的真实库和真实表。

5. 测试分库分表

@Data
public class Order {

    private Long id;
    /**
     * 订单号
     */
    private String orderNo;
    /**
     * 用户id
     */
    private Long userId;
   
}
@Mapper
public interface OrderMapper extends BaseMapper<Order> {
    /**
     * 新增订单
     *
     * @param userId
     * @param orderNo
     * @return
     */
    @Insert("INSERT INTO t_order (user_id, order_no) VALUES(#{userId},#{orderNo})")
    int insertOrder(@Param("userId") Long userId, @Param("orderNo") String orderNo);

    /**
     * 查询订单详情
     *
     * @param id
     * @param userId
     * @return
     */
    Order detail(@Param("id") Long id, @Param("userId") Long userId);
}
5.1 插入操作和查询操作
@RestController
@RequestMapping("/order")
public class OrderController {
    @Resource
    private OrderMapper orderMapper;

    @PostMapping("/insert")
    public Object insertOrder(@RequestBody OrderAddReq req) {
         for (int i = 0; i < 10; i++) {
            orderMapper.insertOrder(500L + i, "新订单"+i);
        }
        return Boolean.TRUE;
    }

    @GetMapping("/detail")
    public Object detail(Long id, Long userId) {
        Order order = orderMapper.detail(id, userId);
        return order;
    }
}
 5.2 验证日志
  •  插入数据日志

  •  查询数据日志

6. 注意事项

  • 表结构一致性:确保 db0 和 db1 数据库中的 t_order 表结构一致。

  • 分布式事务:如果需要支持分布式事务,可以考虑集成Seata等分布式事务解决方案。

  • 分片算法:ShardingSphere提供了多种分片算法(如范围分片、哈希分片等),可以根据业务需求选择合适的算法。例如STANDARD(标准分片算法)、COMPLEX_INLINE(复杂分片算法)、CLASS_BASED(自定义分片算法)、HINT_INLINE(强制分片算法)。

       通过以上步骤,你可以在Spring Boot项目中成功集成ShardingSphere,实现分库分表的功能。如果遇到问题,可以根据日志进一步排查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值