阿拉伯马识别与绵羊体重估计技术详解
阿拉伯马识别技术
在阿拉伯马识别领域,一种基于口鼻部图像的识别方法被提出,它结合了SURF(Speeded-up Robust Features)算法和支持向量机(SVM),主要分为三个阶段:创建特征包、训练SVM分类器和测试SVM分类器模型。
相关算法基础
- SURF特征提取 :通过积分图像与高斯二阶导数的卷积来表示,使用一组盒滤波器近似二阶高斯导数,避免复杂计算。相关公式如下:
- (L_{xx}(X; r) = \langle I(X), \frac{\partial^2}{\partial x^2} g(r) \rangle)
- (L_{xy}(X; r) = \langle I(X), \frac{\partial^2}{\partial x \partial y} g(r) \rangle)
- (L_{yy}(X; r) = \langle I(X), \frac{\partial^2}{\partial y^2} g(r) \rangle)
- (g(r) = \frac{1}{2\pi r^2} e^{-\frac{x^2 + y^2}{2r^2}})
- 近似黑塞矩阵行列式:(\det(H_{approx}) = D_{xx}D_{yy} - w(D_{xy})^2)
- 特征描述符:通过构建以SURF点为中心、大小为(20s)的正方形区域,将其划分为(4×4)子区域,在每个子区域的(5×5)规则采样点计算水平和垂直Haar