56、基于人工神经网络和支持向量机的供水系统水质安全状况检测

基于人工神经网络和支持向量机的供水系统水质安全状况检测

1. 引言

全球范围内,饮用水供应部门都在努力遵循严格的水质安全法规,以降低饮用水带来的水传播感染风险。然而,即便水经过处理,供水网络仍面临着意外或蓄意污染的风险。意外污染可能源于管道网络物理完整性的破坏,如破裂、泄漏和废水侵入;蓄意污染则可能涉及化学物质、生物毒素或病毒、细菌等生物制剂的引入。

目前,饮用水供应部门在水处理过程中努力满足日益严格的水质法规,但在水到达消费者之前,对供水网络中处理后水质的监测却往往不足。供水网络的故障可能导致消费者胃肠道疾病增加,带来健康风险。

在供水网络中部署早期预警系统(EWS)可以实时评估管道内的水质。在这些系统中,来自各个传感器的数据被用于模拟数学模型,其中检测算法对检测准确性起着关键作用。近年来,研究人员采用了多种方法对供水管道中在线传感器的水质数据进行正常或异常分类,包括多元欧几里得距离(MED)、线性预测滤波器(LPF)和时间序列增量等,也应用了人工神经网络(ANN)和支持向量机(SVM)等人工智能模型。不过,许多研究是基于供水管道污染事件的模拟或对测量水质参数的人为干扰来模拟污染事件。为了建立更强大、可靠的模型,有必要基于反映供水管道实际情况的数据来构建整个模型。

2. 方法
2.1 研究区域与数据收集

研究区域为挪威奥勒松市的供水网络。该市饮用水的主要水源是布罗斯达尔湖,供水部门每天从该湖35米深处抽取55,000立方米的水,为约50,000名居民提供服务。研究数据包括2013年1月至2017年6月期间每月对处理后水中pH值、浊度(NTU)、颜色(mg Pt/l)和总细菌计数(counts/ml)的测量,共5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值