用户群体差异如何影响产品策略?
面试官:你认为AI产品经理为何更侧重服务ToB客户?
你的回答:这源于AI产品的技术特性和市场规律。首先,AI模型需要海量数据训练,而企业级客户天然具备行业数据积累优势。以智能客服为例,银行日均产生百万级通话数据,远超C端用户零散反馈。其次,获客成本倒逼选择,C端冷启动需要烧钱补贴,而B端合作可借力企业现有渠道。最后,技术成熟度决定场景适配性,当前AI更适合处理结构化数据场景,如制造业质检、金融风控等标准化程度高的领域。
追问:那是否意味着AI产品永远无法突破C端?
你的回答:并非绝对。关键在于能否穿透用户场景。比如智能音箱初期依赖硬件补贴打开市场,但真正留存靠的是日程管理、家居联动等高频功能。未来突破点在于找到"技术不可替代性",如医疗影像诊断中AI的阅片准确率已超人类医生,这种刚性需求才能撬动C端市场。
技术成熟度评估如何体现专业壁垒?
面试官:你怎么判断某个AI技术是否适合产品化?
你的回答:我建立三维评估模型:技术可行性、场景匹配度、商业价值比。以人脸识别为例,技术层面要确认活体检测准确率是否达99.9%;场景层面需验证支付环节的误识率是否低于百万分之一;商业层面要测算硬件部署成本是否能在三年内收回。某次在智能仓储项目中,我们放弃SLAM导航方案,因激光雷达成本导致ROI超过5年,最终选择视觉导航+地磁辅助方案。
追问:当技术指标达标但市场不