1. ReAct框架的必要性及核心价值
1.1 问:在智能体设计中,为什么需要ReAct模式?它解决了哪些核心问题?
答:ReAct模式解决了LLM三大固有局限:首先是知识时效性问题,静态训练的模型无法获取实时信息;其次是计算能力缺陷,模型不擅长复杂数学运算;最后是环境交互障碍,无法主动获取外部反馈。该模式通过结构化提示工程,将LLM的推理能力与外部工具结合,相当于为模型接通互联网和专用工具库。
1.2 指导意见
面试时应突出产品思维:不要仅仅描述技术概念,而要强调ReAct如何通过产品化设计解决用户实际需求。建议这样组织回答:"从产品架构角度,我们识别出纯LLM方案的三个用户体验瓶颈:实时信息缺失、计算精度不足、系统交互局限。ReAct模式通过工具调用机制,将AI产品从问答工具升级为问题解决平台,这正是现代AI产品架构的核心演进方向。"
2. ReAct核心运作机制详解
2.1 问:请详细解释ReAct的"思考-行动-观察"循环机制
答:该循环包含三个核心环节:思考阶段进行任务分解和策略制定,例如"需要先获取实时数据再进行分析";行动阶段执行工具调用,格式化为Action: ToolName(parameters);观察阶段接收工具返回结果并更新上下文。循环持续直至生成最终答案,这种机制使智能体具备动态规划能力。