聚类算法原理

K-means聚类算法是一种常见的数据分类方法,通过选择聚类数量K,初始化质心,不断迭代更新聚类中心直至收敛。算法效果通常用平方和的变化来衡量,寻找‘肘’点确定最佳K值。当增加类别无法带来显著效果提升时,选择合适的K值至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法流程:

1,选择聚类的个数K.

2,任意产生K个聚类,然后确定聚类中心,或者直接生成K个中心。

3,对每个点确定其聚类新中心。

4,再计算其聚类新中心。

5.重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
K-means:
事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类别的质心(极为类中心),重复这样的过程,直到质心不再改变,最终就确定 了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-means算法的收敛速度比较慢。
在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值