用VGG16做迁移学习,转换为onnx时提示adaptive_avg_pool2d不支持

在尝试将使用VGG16训练的PTH模型转换为ONNX格式时遇到错误,原因是adaptive_avg_pool2d操作的输出尺寸不支持。问题的关键在于输入尺寸需固定为224x224,以确保输出为7x7x512。经过一周的探索,解决方案是保持输入尺寸与VGG16预设的一致。此问题在网络中鲜有相关解答,作者分享了其解决经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:VGG16训练出的模型效果很好,但是是PTH格式的,想转换为ONNX通用模型,但会报错。报错内容:torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator adaptive_avg_pool2d, output size that are not factor of input size. Please feel free to request support or submit a pull request on PyTorch GitHub: Issues · pytorch/pytorch [Caused by the value '70 defined in (%70 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 7 7 [ CPULongType{2} ]]()

)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Constant'.]

Inputs:Empty

Outputs:#0: 70 defined in (%70 : Long(2, strides=[1], device=cpu) = onnx::Constant[value= 7 7 [ CPULongType{2} ]]()

) (type 'Tensor')

解答:只需要把输入维度固定为VGG16的输入图像的尺寸224*224就可以了。因为权重文件的参数数量是提前预设好的,如果随意改变,adaptive_avg_pool2d的输出就不是7*7*512了。

这个问题已经困扰我一周了,今天好不容易解决,记录一下。全网没找到相关答案,在这里找到答案并解决的小伙伴请留个赞。Thanks♪(・ω・)ノ

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值