Rethinking the Value of Network Pruning(论文阅读)

本文质疑了传统的深度学习网络剪枝流程,指出预定义结构化剪枝时,直接从头训练小型网络能获得与剪枝、微调相当的性能。对于自动结构化剪枝,从头训练甚至可能优于微调。研究表明,剪枝更多地关乎学习网络结构而非重要权重,且在某些情况下可视为一种隐式的架构搜索。作者的实验涵盖了多种剪枝方法和数据集,揭示了剪枝和初始化策略对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 摘要

  • 训练一个大型的、过度参数化的模型通常不是获得有效的最终模型所必需的(比如说是每层剪枝比例固定的传统结构化剪枝,没啥必要,不如直接从头训练小网络)。
  • 学习到的大型模型的“重要”权重对于小的修剪模型通常是无用的,所以说我们要学习的不是他们的权重,而是网络的结构(每一层网络的宽度),这表明在某些情况下,修剪可以用作体系结构搜索范例。
  • 还与“彩票假说”(Frankle&Carbin,2019年)进行了比较,发现在最优学习率下,Frankle&Carbin(2019年)使用的“中票”初始化并没有带来比随机初始化更好的效果。
    在这里插入图片描述

2. 介绍

一个典型的网络剪枝过程包括三个阶段:

  1. 训练一个过参数化的大模型。
  2. 按照一定的标准剪枝训练的大模型。
  3. 微调剪枝后的模型以恢复损失的性能。

通常来说,模型修剪过程的背后有两个准则。第一就是是我们训练一个大的、过参数的化模型。它是重要的,第二个就是我们得到的剪枝结构和他的相关权重,是我们获得有效模型所必须的。
作者做了一系列实验证明这两个准则不一定是正确的。做这个发现

  • 对于具有预
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV视界

如果感觉有用,可以打赏哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值