目录
1. 摘要
- 训练一个大型的、过度参数化的模型通常不是获得有效的最终模型所必需的(比如说是每层剪枝比例固定的传统结构化剪枝,没啥必要,不如直接从头训练小网络)。
- 学习到的大型模型的“重要”权重对于小的修剪模型通常是无用的,所以说我们要学习的不是他们的权重,而是网络的结构(每一层网络的宽度),这表明在某些情况下,修剪可以用作体系结构搜索范例。
- 还与“彩票假说”(Frankle&Carbin,2019年)进行了比较,发现在最优学习率下,Frankle&Carbin(2019年)使用的“中票”初始化并没有带来比随机初始化更好的效果。
2. 介绍
一个典型的网络剪枝过程包括三个阶段:
- 训练一个过参数化的大模型。
- 按照一定的标准剪枝训练的大模型。
- 微调剪枝后的模型以恢复损失的性能。
通常来说,模型修剪过程的背后有两个准则。第一就是是我们训练一个大的、过参数的化模型。它是重要的,第二个就是我们得到的剪枝结构和他的相关权重,是我们获得有效模型所必须的。
作者做了一系列实验证明这两个准则不一定是正确的。做这个发现
- 对于具有预