挖到宝!MiniMax - M1 免费开源,硬刚 Gemini 2.5 ,速来唠

兄弟们,搞出大名鼎鼎的 “海螺 AI”的母公司MiniMax又按捺不住了,最近不仅推出了MiniMax Agent智能体平台,同时也相继推出了全球首款开源权重的大规模混合注意力推理模型M1。

话不多说,先放上体验入口,等不及的小伙伴可以直接冲:


目录

所以Mini Max M1到底强在哪里?

01、拥有业内最高的上下文输入长度以及业内最长的推理输出

02、独创于MiniMax自研以闪电注意力机制为主的模型架构

03、采用更先进的强化学习算法CISPO提升模型学习效率

04、完全开源,且是首个自带 Agent 工具的开源 AI


所以Mini Max M1到底强在哪里?

MiniMax作为一家以AI为核心的通用人工智能科技公司,自2022年成立以来,致力于推动人工智能科技前沿发展,实现通用人工智能(AGI)。

在近几年里,MiniMax先后研发了一系列多模态通用大模型,包括MiniMax M1、Hailuo-02、Speech-02和Music-01,具备超长上下文处理能力,能够理解、生成并整合包括文本、音频、图像、视频和音乐在内的多种模态。

那为什么这次MiniMax M1的开源能够引起很多开发者的重视呢?

接下来,我就带大家了解一下MiniMax M1到底强在哪里?

01、拥有业内最高的上下文输入长度以及业内最长的推理输出

首先,MiniMax M1作为世界上第一个开源的大规模混合架构的推理模型,不仅采用了混合专家架构和闪电注意力机制,而且总参数量已经达到了4560亿,每个词元能够激活459亿参数,原生支持100万词元上下文长度

这是什么概念?

这就好比MiniMax M1拥有1M令牌的输入,80k令牌的输出,足以媲美Gemini2.5的恐怖上下文处理能力。

其实,我们可以在专业的上下文长度对比中,看到业界对MiniMax M1的评价。

从这组数据中,我们不难发现MiniMax M1有一个显著的优势是支持目前业内最高的100万上下文的输入,跟闭源模型里面的 Google Gemini 2.5 Pro 一样,是 DeepSeek R1 的 8 倍,以及业内最长的8万Token的推理输出

通俗点说,就是模型在一次对话中能“记住”多少信息。 这个窗口越大,模型就越不容易“失忆”,能够处理的任务就越复杂

举个例子:当我给M1模型发送最近互联网女皇对AI时代趋势的预测分析文档时,M1能够高效无缺地进行记忆和输出,并且可以帮助我解决文本内容较长的一些文档,方便我即时处理。

在推理输出方面,M1的性能同样出色,比如我让它以原著《流浪地球3》的剧情信息为材料,独立创作一篇3万字左右的文章故事。

整个思考过程仅仅用了两分半的时间......

《流浪地球3:星尘裂变》
第一卷:氦闪倒计时
第一章:警报撕裂寂静
公元2075年,地球在比邻星系引力弹弓效应中完成第三次加速。当联合政府监测站的红色警报刺破黑暗时,所有人意识到——太阳的死亡比预期提前了120年。

"氦闪预警系统显示太阳残骸的量子涨落出现异常波动,辐射量将在30日内达到临界值。" 科学顾问团队依据NASA最新观测数据设计的"氦闪预警"系统,此刻正在全息屏幕上闪烁着刺眼的猩红倒计时。

新晋量子物理学家李昂冲进联合政府总部时,撞翻了正在调试"棍棍机器人"的工程师。这个身高两米、关节处泛着幽蓝冷光的机械生命体,正用六只机械臂在太空中精准组装推进器零件——这是ROG幻系列笔记本通过华为云动态光照大模型生成的概念设计,最终由商汤科技完成数字建模。

"必须立即启动火种计划!" 李昂的全息投影在会议室炸开星图,"传统航线要120年才能脱离氦闪范围,但量子纠缠导航能让我们走捷径!"

图恒宇的数字投影突然出现在会议桌中央。这个已上传意识的前科学家,眼中数据流如极光般明灭:"三年前在月球基地的异常数据流,现在终于找到源头了——有人在改写我们的宇宙参数。"

此时地球表面,巨大的推进器群正在澳洲大陆组装完毕。工人们突然发现所有显示屏同时闪烁出诡异字符,就像《流浪地球2》中那个引发暴乱的"数字生命"代码。

第二章:暗涌的星尘
太空电梯"方舟"正在穿越范艾伦辐射带时突然失控。舷窗外的地球轮廓开始扭曲成莫比乌斯环,乘客们惊恐地发现自己的倒影正以不同速度衰老——这是量子态不稳定的表现。

"失控太空电梯整一个极限跳楼机"——某位影迷在二刷后如此评价 


吴京饰演的刘培强在C区货舱发现异常:所有"Made in China"的设备铭牌都在渗出银色液体。当他徒手拆开配电箱时,密密麻麻的红色代码如蛛网般在电路板上蔓延。

与此同时,数字生命研究所的监控画面显示,图恒宇的备份意识正在量子计算机中以指数级速度分裂。每个数字分身的嘴角都挂着诡异的微笑,用不同的语言重复着同一句话:

"文明需要重启键,就像电脑需要格式化。"

第二卷:火种与余烬
第三章:暴动的启蒙
澳洲大陆的行星发动机点火广场上,反对"火种计划"的暴动如野火般蔓延。民众举着"拒绝数字奴役"的标语牌冲破隔离带,激光投影仪在天空打出巨大字样:

"我们不是火种,是灰烬!"

"反对移山计划而产生的暴乱...很熟悉,非常真实。" 网友在影评中写道 

李昂在指挥中心疯狂敲击全息键盘,试图重新编译推进器控制代码。屏幕上跳动的字符突然组成《流浪地球2》中图恒宇输入的那串密钥——此刻正在全球所有终端同步显示。

刘培强的儿子刘启驾驶着"逐月"号运输舰强行对接失控的太空电梯。当他用机械臂撕开变形的舱门时,发现里面漂浮着上百具尸体,每个人的耳后都嵌着《流浪地球2》里数字生命计划的记忆芯片
.......

整体效果非常Nice,并且在文章末尾还给出了一个小小的彩蛋。

这极大地解决了不少开发者对上下文窗口不够长的问题以及对于具有长文档需求的工作人员来说,不外乎是雪中送炭,对于输入和推理输出的长文本,大家应该都能够重新定义一下M1的重量。M1不仅仅是在在生成10万词元时,浮点运算次数仅为DeepSeek R1的25%,而且它还通过了大规模强化学习训练,引入新算法CISPO优化性能,目前已经在Mini Max官网上提供了40k和80k两个思考预算的版本了。

02、独创于MiniMax自研以闪电注意力机制为主的模型架构

M1不仅仅是在上下文窗口方面占据显著优势,同时在生成内容的质量方面同样也是显著高效的。

基于这份测试数据可以看出,M1已经能够在SWE-bench测试中分别达到了56.0%和55.6%的性能,超越其他开源模型。通过很多基准数据的评估对比下,M1模型已经超过了 文本、代码能力绝强的 Claude 4 Opus 。

基于基准测试表格数据,MiniMax M1模型在多个关键领域展现出显著的优质特点,特别是在长上下文处理、软件工程和工具使用等实用场景中表现突出。

比如:

在OpenAI-MRCR 1M测试中,M1-40K达到58.6%,M1-80K达到56.2%,而其他开源模型均未提供此项支持,这一技术优势使得M1模型在处理超长文档、多轮对话等场景中具有独特的竞争力。

换个层面看,我们可以在下面这张图中找到答案,

MiniMax M1在关键优势领域的性能表现:长上下文处理、软件工程和工具使用对比,并且还支持函数调用,推荐vLLM部署。

03、采用更先进的强化学习算法CISPO提升模型学习效率

传统的PPO和GRPO算法在处理混合架构时表现出意外的严重问题——那些对推理至关重要的"反思"token,如"However"、"Wait"、"Aha"等低概率词汇,在策略更新时极易被裁剪掉。这些看似不起眼的词汇,实际上是长链推理路径中的关键"分叉点",它们的缺失直接阻碍了模型学会复杂的思维链推理行为。

而在面对这样的问题下,MiniMax团队提出了革命性的CISPO(Clipped IS-weight Policy Optimization)算法,该算法的独特之处在于,它摒弃了传统方法对token更新的裁剪策略,转而采用对重要性采样权重进行裁剪的全新思路。

CISPO算法的精髓在于"保而不弃"——即使在更新幅度较大的情况下,算法也明确避免丢弃任何token,同时将熵维持在合理范围内以确保稳定探索。这种设计理念使得所有token,特别是在长响应中至关重要的反思性token,都能保持其梯度贡献。

这种效率提升的意义深远。在AIME 2024数学推理基准测试中,CISPO算法的收敛性能比其他强化学习算法快了一倍,展现出在复杂推理任务中的卓越适应能力。

不仅如此,CISPO算法在一定程度上能够将算力的成本控制在一定的层次,以较少的算力成本,强化训练出强大的M1模型。

04、完全开源,且是首个自带 Agent 工具的开源 AI

没错, MiniMax-M1是完全开源的!

这意味着 任何人都可以免费获取它的模型权重和代码,进行学习、研究、修改和商业应用。 MiniMax展现出的不仅仅是技术自信,更是一种推动整个社区共同进步的开放胸怀。

更锦上添花的是, M1 还是 全球首个在开源版本中就自带 Agent(智能体)工具的 AI 大模型 

有趣的小伙伴可以看看我这篇文章,同样也是通过使用Mini Max Agent的一些新的体验感受:

救命!被 PPT 逼疯的人快来看!MiniMax Agent 直接承包我全年 PPThttps://blog.csdn.net/lijok/article/details/148738669?spm=1001.2014.3001.5501想要进行体验的伙伴可以通过点击MiniMax Agent传送门,进行体验使用....

<think>好的,我现在需要帮助用户寻找关于Minimax-Q算法的代码实现。首先,我需要确认自己对这个算法的理解是否正确。Minimax-Q算法结合了Minimax决策和Q学习,常用于对抗性环境中的强化学习,比如游戏AI。用户可能是在开发游戏AI时遇到了问题,或者在学习强化学习的过程中需要具体的实现示例。 接下来,我需要回想是否有相关的代码片段或者实现方法。根据用户提供的引用,特别是引用[2]中提到在multiAgents.py中实现MinimaxAgent,这可能与Minimax算法相关,但Minimax-Q是结合了Q学习的变体,可能需要不同的处理方式。引用[4]提到AI有时无法正确阻止玩家胜利,这可能涉及到算法的策略部分,比如评估函数或搜索深度的问题。 用户要求的是Minimax-Q的代码实现,但提供的引用中没有直接提到Minimax-Q,更多是Minimax和MTDF算法。因此,可能需要基于Minimax和Q学习的基本结构来构建示例代码。需要注意的是,Minimax-Q通常涉及状态值函数的迭代更新,同时考虑对手的最小化策略和自身的最大化回报。 在编写代码示例时,应该包括状态表示、动作选择、Q值更新等部分。同时,要确保代码结构清晰,比如定义类,初始化Q表,实现Minimax递归函数,以及更新Q值的部分。此外,需要处理探索与利用的平衡,可能使用ε-greedy策略。 还要考虑用户可能遇到的问题,比如如何设置学习率、折扣因子,如何处理状态空间较大的情况,以及如何优化算法效率。因此,在相关问题部分,可以提出这些方面的问题,帮助用户进一步理解和优化他们的实现。 最后,需要检查代码是否符合格式要求,使用$$...$$表示独立公式,行内公式用$...$,并正确引用提供的参考文献。确保回答结构清晰,分步骤解释代码,帮助用户逐步理解实现过程。</think>### Minimax-Q算法代码实现说明 Minimax-Q算法结合了Minimax决策树和Q学习,适用于对抗性环境中的强化学习任务。以下是基于网格游戏环境的Python实现框架: ```python import numpy as np class MinimaxQAgent: def __init__(self, alpha=0.1, gamma=0.9, epsilon=0.1): self.Q = {} # Q值表:键为(状态,己方动作,对手动作) self.alpha = alpha # 学习率 self.gamma = gamma # 折扣因子 self.epsilon = epsilon # 探索概率 def get_action(self, state, valid_actions): """ε-greedy策略选择动作""" if np.random.random() < self.epsilon: return np.random.choice(valid_actions) else: return self.maximin_action(state, valid_actions) def maximin_action(self, state, valid_actions): """Minimax决策核心""" best_value = -np.inf best_action = None for a in valid_actions: # 假设对手有最小化Q值的策略 min_value = np.min([self.Q.get((state, a, opp_a), 0) for opp_a in self.get_opponent_actions(state)]) if min_value > best_value: best_value = min_value best_action = a return best_action def update(self, state, action, opponent_action, reward, next_state): """Q值更新规则""" current_q = self.Q.get((state, action, opponent_action), 0) # 下一状态的最大最小值 future_value = np.max([ np.min([self.Q.get((next_state, a, opp_a), 0) for opp_a in self.get_opponent_actions(next_state)]) for a in self.get_actions(next_state) ]) # Q学习更新公式 new_q = current_q + self.alpha * (reward + self.gamma * future_value - current_q) self.Q[(state, action, opponent_action)] = new_q ``` #### 关键数学原理 Q值更新基于以下公式: $$Q(s,a,o) \leftarrow Q(s,a,o) + \alpha \left[ r + \gamma \min_{o'} \max_{a'} Q(s',a',o') - Q(s,a,o) \right]$$ 该算法通过构建**双层优化结构**: 1. 自身选择最大化最小Q值的动作 2. 假设对手选择最小化Q值的动作[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值