同态滤波的原理很简单,详细介绍请自行search,本文主要专注于opencv下homofilter的实现,并给出代码和运行结果,此前的参考了一些网上opencv的homofilter实现代码,然并卵啊,花了点时间自己做。
算法基本流程如下:
1. 原始输入图像: 通常是亮度分量,Y分量,色度分量不用处理
2. ln:对数变化,原理上是说将乘性信号分解为加信信号,具体原理自己搜一下
3. 变换到频域:dft,fft,dct都行,我用的是dct,dct变换后的结果是实数,节省空间,低频分量集中在左上角,高频分量集中在右下角
4. high pass filter:关键部分,homofilter观点认为光照不均匀的部分集中在低频分量,将低频分量滤除可以消去光照不均的影响,从而提升暗处和高亮处物体的可见度,但整体亮度变化区间会变小。具体滤波器的设计不多讲了,这里值得注意的是dct结果的原点处的值是原始图像的能量总和,是不能直接滤除的,否则你得到的是一张黑色的图片,什么也看不见,因为总能量被减小后,图像的整理亮度下降。所以滤波器原点值设为1,这样保证滤波后的图片和原始图片能量一致,既平均亮度一致,如果你想提升整体亮度,也可以将滤波原点值设为大于1。
5. 频域变换到空域:idft, idct...
6. exp:指数运算,ln的反变换
其中3,4,5只是完成高通滤波,也可以直接在空域用滑动窗口滤波实现,尝试了7x7的gaussianblur,构建一个高通滤波,效果不好
代码如下:
void my_H