利用GAN来为冷启动用户生成 行为特征完成yelp数据集上,冷启动垃圾识别的问题。

本文聚焦于冷启动用户在垃圾评论识别领域的挑战,利用生成对抗网络(GAN)为缺乏历史记录的新用户提供行为特征,从而提升检测准确率。研究基于Yelp2013数据集,通过学习非冷启动用户的大量信息,生成可靠的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前的工作总结一下,收录为2019DASFAA的短文。
Generating Behavior Features for Cold-Start Spam Review Detection。

文章主要是针对垃圾识别领域中冷启动用户的问题,冷启动用户指刚刚发表一条新评论的用户,此类用户没有大量的文本或者行为特征供我们进行提取。

本文通过generative adversarial network(GAN)来为这些用户生成比较可靠的行为特征,具体是通过从已经具有大量可提取的非冷启动用户的信息中进行学习。

数据集为yelp2013数据。
具体文章

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值