大模型学习:什么是FastText模型架构

#VibeCoding·九月创作之星挑战赛#

一、FastText模型架构

FastText在词向量训练上使用了与Word2Vec类似的模型架构,但有所改进。FastText可以基于两种训练方式:

  • Skip-gram模型

    • 在Skip-gram模型中,给定一个中心词(目标词),模型的目标是通过预测上下文词(周围的词)来学习该中心词的表示。FastText的改进之处在于,它不仅使用中心词的表示来进行上下文词的预测,还将每个词拆解为多个子词。每个子词都会贡献到目标词的词向量学习中。
    • 在FastText中,每个词向量是由其所有子词向量的总和组成的。这样,FastText不仅能够处理已知的词,还能通过词的子词推测出未登录词的向量表示。
  • CBOW(Continuous Bag of Words)模型

    • 和Word2Vec中的CBOW模型很类似, 不同之处在于, FastText预测标签, 而CBOW模型预测中间词。
    • 在CBOW模型中,给定一组上下文词,模型的目标是通过预测目标词来学习词向量。在FastText中,每个上下文词的向量是通过其子词表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦实学习室

强国有我,请您放心!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值