更多python教程请到友情连接: 菜鸟教程https://www.piaodoo.com
初中毕业读什么技校 http://cntkd.net
茂名一技http://www.enechn.com
ppt制作教程步骤 http://www.tpyjn.cn
兴化论坛http://www.yimoge.cn
电白论坛 http://www.fcdzs.com
数据集介绍
MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片,且内置于keras。本文采用Tensorflow下Keras(Keras中文文档)神经网络API进行网络搭建。
开始之前,先回忆下机器学习的通用工作流程( √表示本文用到,×表示本文没有用到 )
1.定义问题,收集数据集(√)
2.选择衡量成功的指标(√)
3.确定评估的方法(√)
4.准备数据(√)
5.开发比基准更好的模型(×)
6.扩大模型规模(×)
7.模型正则化与调节参数(×)
关于最后一层激活函数与损失函数的选择
下面开始正文~
1.数据预处理
首先导入数据,要使用mnist.load()函数
我们来看看它的源码声明:
def load_data(path='mnist.npz'): """Loads the [MNIST dataset](http://yann.lecun.com/exdb/mnist/).
This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
along with a test set of 10,000 images.
More info can be found at the
MNIST homepage.
Arguments:
path: path where to cache the dataset locally
(relative to ~/.keras/datasets
).
Returns:
Tuple of Numpy arrays: (x_train,