CTR调研——博客、论文、代码

CTR相关理论介绍、论文、代码等资源收集

博客

论文

  • CTR点击率预估论文集锦(持续更新)
  • 经典论文
    • (FM). Steffen Rendle. Factorization Machines, ICDM (CCF-B), 出自大阪大学。2010年
    • (DSSM). Po-Sen Huang. Learning deep structured semantic models for web search using clickthrough data, CIKM (CCF-B), 出自伊利诺伊大学厄巴纳-香槟分校和微软合作。2013年
    • (GDBT+LR). Practical Lessons from Predicting Clicks on Ads at Facebook, KDD WorkShop, 出自Facebook团队。2014年
    • (FFM). Yu-Chin Juan. Field-aware Factorization Machines for CTR Prediction, RecSys, 出自Criteo团队
    • (Wide&Deep). Heng-Tze Cheng. Wide & Deep Learning for Recommender Systems, RecSys, 出自谷歌团队
    • (PNN). Yanru Qu. Product-based Neural Networks for User Response Prediction, ICDM (CCF-B), 出自上海交通大学
    • (FNN). Weinan Zhang. Deep Learning over Multi-field Categorical Data - - A Case Study on User Response Prediction, ECIR (CCF-C), 出自伦敦大学
    • (DeepFM). Huifeng Guo. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI (CCF-A),出自华为和哈尔滨工业大学合作
    • (xDeepFM). Jianxun Lian. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, KDD (CCF-A),出自微软和中国科学技术大学合作
    • (DNN双塔). Xinyang Yi. Sampling-bias-corrected neural modeling for large corpus item recommendations, RecSys. 出自谷歌YouTube团队
    • (DFN). Ruobing Xie. Deep Feedback Network for Recommendation,2020,IJCAI(CCF-A). 出自腾讯微信团队

代码

  • https://github.com/DSXiangLi/CTR
    README.md: https://github.com/DSXiangLi/CTR/blob/master/README.md
  • https://github.com/NELSONZHAO/zhihu/tree/master/ctr_models
    README.md: https://github.com/NELSONZHAO/zhihu/blob/master/ctr_models/README.md
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lingpy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值