深度学习【6】二值网络(Binarized Neural Networks)学习与理解

本文介绍了Binarized Neural Networks,它基于BinaryConnect和NEURAL NETWORKS WITH FEW MULTIPLICATIONS,将权重和激活值二值化为+1或-1,以降低存储空间和运算时间。文章探讨了二值化的两种方法(Deterministic和Stochastic)、权值更新算法,以及乘法操作的优化,如Shift-based Batch Normalization和位运算,强调了二值网络在深度学习移动端应用的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/linmingan/article/details/51008830

 

        Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or−1的工作是基于BinaryConnect: Training Deep Neural Networks with binary weights during propagations和NEURAL NETWORKS WITH FEW MULTIPLICATIONS这两篇文章的。二值网络是将权值W和隐藏层激活值二值化1或者-1。通过二值化,使模型的参数占用更小的存储空间;同时利用位移操作来代替网络中的乘法运算,大大降低了运算时间。

由于二值网络只是将网络的参数和激活值二值化,并没有改变网络的结构。因此我们主要关注如何二值化,以及二值化后参数如何更新。同时关注一下如何利用二进制位操作实现GPU加速计算的。

1、二值化

        二值网络的二值化方法有两种,一种是Deterministic(确定性方法),一种是Stochastic(概率统计方法)。

Deterministic方法:大于0就为+1,小于0则为-1。

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值