深度学习【43】BEGAN

BEGAN解决了GAN训练的稳定性问题,实现了D和G网络的平衡,以及生成多样性与质量的控制。它利用了自编码器的重构误差作为损失函数,并通过Jensen不等式优化Wasserstein距离的下界。实验结果显示,BEGAN能生成高质量且多样性的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GAN有不少未解决的问题:1、虽然在DCGAN和improveGAN中提出了不少训练GAN的tricks,但是GAN还是很难训练。2、很难控制G网络的多样性。3、D网络和G网络之间的平衡性很难控制,大部分情况下D网络在训练之初能力会更强。
而BEGAN提出了能够使得训练过程快又稳定的方法;解决了D网络和G网络能力平衡问题;有能力控制生成图片的多样性和质量平衡问题以及衡量收敛性的近似方法。

BEGAN

这里写图片描述
上图是BEGAN在mnist数据上设计的一个模型,借助了EBGAN的encoder-decoder作为D网络结构的思想。一共有三个网络,分别是G网络,以及D网络中的encoder和decoder。其中G网络和decoder的网络结构是一样的,这两个网络旁边灰色部分是可选的优化结构(跳跃连接和加入h0信息)。

看完模型结构例子,我们在看看began的损失函数:
这里写图片描述
这里写图片描述
其中L 表示重构误差:
(x)=L1_loss(yyD)L(x)=L1_loss(采样而来的真实图片y−y经过D网络重构出来的图片)
(G(zG))=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值