目标检测 - Tensorflow Object Detection API

本文介绍了使用 TensorFlow 的 Object Detection API 进行目标检测,探讨了精度与效率的权衡,并对比了 Faster R-CNN、RFCN 和 SSD 检测框架。通过 Github 下载代码并运行实例,同时建议配合论文阅读以理解技术原理。重点关注了 Inception Resnet 网络带来的精度提升和通过降低图像分辨率、减少 Proposal 数量提高算法效率的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 找到最好的工具

       “工欲善其事,必先利其器”,如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的。

       回到题头 - 目标检测,相信你一定看过这篇 Paper: Speed/accuracy trade-offs for modern convolutional object detectors, Huang J, CVPR2017

       所谓 Trade-Off 是指精度和效率之间的 Trade-Off,TensorFlow 给出了该方法的具体实现:

       代码下载:Github


二. 跑通代码

   

PyTorch版的YOLOv5是轻量而高性能的实时目标检测方法。利用YOLOv5训练完自己的数据集后,如何向大众展示并提供落地的服务呢?   本课程将提供相应的解决方案,具体讲述如何使用Web应用程序框架Flask进行YOLOv5的Web应用部署。用户可通过客户端浏览器上传图片,经服务器处理后返回图片检测数据并在浏览器中绘制检测结果。   本课程的YOLOv5使用ultralytics/yolov5,在Ubuntu系统上做项目演示,并提供在Windows系统上的部署方式文档。 本项目采取前后端分离的系统架构和开发方式,减少前后端的耦合。课程包括:YOLOv5的安装、 Flask的安装、YOLOv5的检测API接口python代码、 Flask的服务程序的python代码、前端html代码、CSS代码、Javascript代码、系统部署演示、生产系统部署建议等。   本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》Ubuntu系统 https://edu.csdn.net/course/detail/30793 Windows系统 https://edu.csdn.net/course/detail/30923 《YOLOv5(PyTorch)目标检测:原理与源码解析》https://edu.csdn.net/course/detail/31428 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》https://edu.csdn.net/course/detail/31087 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》https://edu.csdn.net/course/detail/32303
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值