PaddleSeg快速标注图像

PaddleSeg快速标注图像

一、介绍
1、paddleseg是百度开发的交互式图像分割软件,可以通过点击target,自动生成建议区域,然后可以人工微调分割区域,提高标注效率。图像分割工具PaddleSeg使用

二、提高标注效率
2.1只使用鼠标。
设置鼠标侧边按键对应软件下一张快捷键。这样只需要左击,再按鼠标侧边键

2.2 只使用键盘
使用 AutoHotKey 软件,可以使用键盘模拟鼠标点击操作。 这样就可以只使用键盘,交替点击键盘上的下一张快捷键和设置好的模拟鼠标点击快捷键。

快捷键可以正常模拟鼠标移动和点击操作,但是打开peddleseg后,快捷键失效。其他快捷键也失效(alt+a截图,snipast的F1截图快捷键等)

2.3 使用其他软件,直接录制鼠标和键盘操作,并生成对应代码及可执行文件;也可直接编写鼠标键盘操作。还可以设置重复次数
2.3.1 按键精灵
太久没更新,最新版本是2014年的,且是win32版本的软件,但是可以正常使用。

在其他软件上可以正常使用,可以自动重复我在其他软件上的鼠标和键盘操作,但是在paddleseg上的操作无法被成功捕捉到(通过对比paddelseg上操作生成的执行文件和其他软件上操作生成的文件做对比,发现执行文件没有捕捉到键盘操作,鼠标操作可以捕捉到)

https://www.jx3box.com/tool/15547在这里插入图片描述

2.3.2KeymouseGo v5.1
具体使用方法见https://github.com/taojy123/KeymouseGo

效果如下:

### PaddleSeg 图像分割使用教程 #### 数据准备与标注 对于图像分割任务,数据的质量至关重要。可以利用`Labelme`工具来进行精确的数据标注工作[^1]。该软件支持多边形绘制功能,非常适合用于复杂形状的目标物标注,如动漫人物实例分割。 ```bash pip install labelme labelme ``` 完成图片标记之后,需转换成适合PaddleSeg读取的格式: ```python import os from paddleseg.cvlibs import manager, Config from paddleseg.utils import get_sys_env, logger from paddleseg.core.infer import inference from tools.convert_dataset_to_paddlesseg_format import convert_labelme_jsons_to_PaddleSeg_format convert_labelme_jsons_to_PaddleSeg_format('path/to/your/json/files', 'output/path') ``` #### 安装依赖环境并获取预训练模型 为了简化安装过程以及确保版本兼容性,建议创建独立虚拟环境来运行此项目。接着按照官方文档指示下载对应框架及其扩展库,并加载预先训练好的权重文件作为初始化参数[^3]。 ```bash conda create --name paddelseg python=3.7 -y source activate paddelseg pip install paddlepaddle-gpu==2.0.0rc1.post108 -f https://www.paddlepaddle.org.cn/whl/stable.html pip install paddleseg ``` #### 训练流程概述 在准备好所有必要的资源后就可以着手构建自己的网络结构或者微调现有架构了。这里以HRNet为例介绍具体操作方法: - **定义配置文件**: 创建yaml格式配置文件指定超参设置、优化器选项等内容; ```yaml MODEL: TYPE: HRNet_W48_Segmentation PRETRAINED_MODEL: hrnet_w48_pretrained_model_path DATASET: TRAIN_FILE_LIST: train.txt VAL_FILE_LIST: val.txt TEST_FILE_LIST: test.txt OPTIMIZER: NAME: AdamW LEARNING_RATE: 0.000125 ``` - **启动训练脚本** ```bash cd PaddleSeg/ python train.py \ --config configs/hrnet_w48.yaml \ --do_eval True \ --save_interval 1000 \ --iters 40000 \ --batch_size 4 \ --num_workers 4 \ --use_vdl True \ --data_dir ./dataset \ --log_iters 10 \ --keep_checkpoint_max 5 \ --model_save_dir output/hrnet_w48_ocr ``` #### 结果评估与可视化 当迭代次数达到预定目标或是损失函数收敛稳定时即可停止训练。此时可借助内置命令查看预测效果并与真实标签对比分析性能指标;另外也能够直接输出彩色编码后的掩码图以便直观感受算法准确性。 ```bash cd PaddleSeg/ python predict.py \ --cfg ${CONFIG}\ --image_path ${IMAGE_PATH}\ --vis_dir vis_result/ ``` #### 应用场景拓展 除了静态帧处理外,还展示了如何将上述技术应用于连续视频流中的每一帧上从而实现实时物体跟踪等功能特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值