你必须知道的AI Agent五种模式

目录

引言:从"对话"到"行动",解密AI Agent的核心设计模式

一、基础能力:AI的思考与工具

1.1 反射模式(Reflection):会"自我纠错"的AI

1.2 工具使用模式(Tool Use):为AI装备"万能工具箱"

二、行动逻辑:ReAct模式的"思考-行动"循环

三、运筹帷幄:应对复杂任务的高级模式

3.1 规划模式(Planning):引入AI"项目经理"

3.2 多智能体模式(Multi-agent):组建AI"专家团队"

总结:设计模式,铺就AI的未来之路


  🎬 攻城狮7号个人主页

🔥 个人专栏:《AI前沿技术要闻》

⛺️ 君子慎独!

 🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要介绍 AI Agent五种模式
📚 本期文章收录在《AI前沿技术要闻》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!

引言:从"对话"到"行动",解密AI Agent的核心设计模式

        大型语言模型(LLM)已展现出惊人的对话能力,但其真正潜力在于成为能自主解决问题的"行动者"(Agent)。一个AI Agent能够理解任务、制定计划、使用工具并最终完成目标,例如自动规划并预订一次完整的旅行。这背后并非依赖单个模型,而是一套精心设计的协作模式。本文将深入解析当前业界主流的五种Agent设计模式,揭示AI如何从"能言善道"进化为"能干实事"。

一、基础能力:AI的思考与工具

        高级Agent的构建始于两个基础能力:自我反思与借助外力。

1.1 反射模式(Reflection):会"自我纠错"的AI

        该模式打破了AI"一锤子买卖"的问答方式,通过引入"反馈-反思"循环,让AI能根据用户反馈持续优化输出。

工作流程:

        (1)初始输出:LLM针对用户请求生成初步答案。

        (2)用户反馈:用户对答案进行评价或给出修改意见。

        (3)反思调整:Agent分析反馈,评估初步答案的不足(如内容、风格等),并调整策略。

        (4)迭代优化:基于反思生成新答案,此过程可重复直至用户满意。

核心价值:

        将AI从单向信息输出器转变为双向沟通合作者,使其具备持续学习和适应用户偏好的能力。

1.2 工具使用模式(Tool Use):为AI装备"万能工具箱"

        LLM的知识是静态的,无法感知实时信息或执行特定计算。工具使用模式通过授权LLM调用外部工具(API),打破了这一限制。

工作流程:

        (1)意图识别:LLM分析用户查询,识别出自身无法独立完成的部分(如查询天气、网络搜索、数据库访问)。

        (2)工具选择与调用:从预设的工具库中选择合适的工具并传递所需参数。

        (3)整合与生成:接收工具返回的结构化数据,并用自然语言将其组织成连贯的答案。

核心价值:

        极大扩展了LLM的能力边界,使其能获取实时信息、执行精确计算、操作外部软件,是构建高级Agent的基石。

二、行动逻辑:ReAct模式的"思考-行动"循环

        掌握工具后,Agent需要知道如何有序地使用它们。ReAct模式(Reason + Act)通过模仿人类的"思考→行动→观察"循环,让Agent的决策过程既高效又透明。

工作流程解析:

        以"查找苹果公司CEO及其出生年份"为例:

        (1)思考(Reason):我需要先找到CEO的名字。

        (2)行动(Act):使用搜索工具,搜索"苹果公司CEO"。

        (3)观察(Observation):结果是蒂姆·库克。

        (4)再次思考(Reason):已获知名字,现在需要查找他的出生年份。

        (5)再次行动(Act):使用搜索工具,搜索"蒂姆·库克出生年份"。

        (6)再次观察(Observation):结果是1960年。

        (7)最终整合:信息收集完毕,生成最终答案。

核心价值:

        ReAct模式让Agent的决策路径变得清晰可追溯,便于调试和优化。它使Agent在处理需要多步骤解决的复杂问题时,表现得更加可靠和有逻辑性。

三、运筹帷幄:应对复杂任务的高级模式

        面对更复杂的任务,我们需要引入具备宏观规划与分工协作能力的模式。

3.1 规划模式(Planning):引入AI"项目经理"

        规划模式的核心是在执行前,先由一个"规划者"(Planner)将宏大任务拆解成一系列具体的子任务列表。

工作流程:

        (1)任务拆解:针对用户复杂请求(如"撰写市场分析报告"),Planner会生成一个有序的任务清单(如:搜集数据、分析竞品、整合图表、撰写草稿)。

        (2)顺序执行:一个或多个执行者Agent(通常采用ReAct模式)逐一完成清单上的任务。

        (3)监控与调整:Planner全程监控进度,并可根据实际情况动态调整计划。

        (4)最终整合:所有子任务完成后,Planner整合结果,生成最终交付物。

核心价值:

        通过"先规划,后执行",确保了Agent行动的条理性和目的性,显著提高了复杂任务的成功率。

3.2 多智能体模式(Multi-agent):组建AI"专家团队"

        对于需要多种专业技能的超级任务(如"开发一个App"),单一Agent难以胜任。多智能体模式通过构建一个由多个"专家"Agent组成的团队来协同完成。

工作流程:

        (1)任务分发:"项目经理"Agent接收总体需求,将其分解并分配给不同角色,如"UI设计Agent"、"后端开发Agent"、"测试Agent"等。

        (2)并行协作:各专家Agent并行或串行工作,并可相互沟通(如前端Agent向后端Agent请求接口文档)。

        (3)成果汇总:各Agent将完成的部分提交给"项目经理"Agent。

        (4)集成交付:"项目经理"Agent负责最终的集成、审查和交付。

核心价值:

        模拟真实社会组织结构,通过"分工协作"应对单一Agent无法企及的、跨领域的复杂挑战,是通往通用人工智能(AGI)的重要探索方向。

总结:设计模式,铺就AI的未来之路

        从简单的"反射"与"工具使用",到逻辑严谨的"ReAct"循环,再到运筹帷幄的"规划"与"多智能体协作",这五种模式勾勒出AI从"聊天机器人"到"自主智能体"的演进路径。它们并非相互独立,而是常常组合使用,共同构成了强大AI Agent的骨架。理解这些模式,就是掌握开启"行动者"智能时代大门的钥匙。

看到这里了还不给博主点一个:
⛳️ 点赞☀️收藏 ⭐️ 关注

💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力! 

### 问与手动模式及代理程序模式的定义 #### 定义 - **Ask 模式**: 这种模式通常指代一种基于查询的方式,在这种情况下,用户或系统会向某个特定模块发送请求以获取信息或者执行某些操作。它可能涉及简单的问答机制或是更复杂的自然语言处理技术来理解用户的意图并提供相应的响应[^1]。 - **Manual 模式**: 手动模式意味着所有的动作都需要人为干预完成。在这种设置下,用户直接控制系统的每一步行为,而不依赖自动化过程。这种方式适用于那些需要高度精确性和灵活性的任务,尤其是在初始阶段或者是当自动化的风险过高时[^2]。 - **Agent 模式**: 如前所述,代理程序(Agent)是一种能够在环境中自主运行,并能根据其目标采取适当行动的实体。它可以利用多种感官输入形式(如视觉数据),并通过学习算法不断改进自己的表现。此外,这些代理还可以被设计成具有一定的“体现性”,即它们不仅能够感知周围的世界还能与其互动,从而实现更加复杂的功能比如解决实际物理世界的难题或者操控机械装置等任务[^3]。 #### 使用场景 - 对于 Ask 模式的典型应用场景包括但不限于客服聊天机器人、搜索引擎优化后的推荐服务等领域。在这里面,主要目的是快速准确地回应客户的疑问或将他们引导至所需资源处。 - Manual 模式则广泛应用于工业生产线上的人机界面(HMI),医疗设备的操作面板以及任何其他不允许错误发生的关键业务流程之中。因为即使最先进的AI也无法完全取代人类判断力特别是在面对未知情况的时候。 - Agent 模式最常出现在自动驾驶汽车的研发测试过程中还有智能家居控制系统里头。前者依靠大量传感器收集路况信息再经由内部计算决定最佳行驶路线;后者则是通过预设规则加上实时反馈调整室内温度湿度灯光强度等因素营造舒适生活环境的同时节约能源消耗成本。 ```python class ModeExample: def ask_mode(self, query): """Simulates an 'ask' mode interaction.""" response = f"Response to your question: {query}" return response def manual_mode(self, action): """Executes a manually specified action.""" result = f"Manually executed action: {action}" return result def agent_mode(self, environment_state): """Demonstrates how an autonomous agent might act based on its perception of the world.""" decision = self.decide(environment_state) outcome = f"Agent decided to take action '{decision}' given state '{environment_state}'." return outcome @staticmethod def decide(state): # Placeholder logic for making decisions. if "obstacle ahead" in state.lower(): return "turn left" elif "clear path" in state.lower(): return "move forward" else: return "stop" example_instance = ModeExample() print(example_instance.ask_mode("What is the weather today?")) print(example_instance.manual_mode("Open door")) print(example_instance.agent_mode("Obstacle Ahead")) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值