0031. shell命令--split

目录

31. shell命令--split

功能说明

语法格式

选项说明

实践操作

注意事项


31. shell命令--split

功能说明

        split 是 Linux 中的一个实用程序,用于将大文件分割成较小的文件。这在处理大文件时特别有用,特别是当您需要将文件分成多个部分以进行并行处理或传输时。

        split 命令来自英文单词“分裂”,其功能是用于分割文件内容。Linux 系统运维人员可以使用 split 命令对指定的大文件进行内容分割,默认会按照每 1000 行切割成一个小文件来执行,也可以自定义分割大小,方便阅读和传输。

语法格式

SYNOPSIS
       split [OPTION]... [INPUT [PREFIX]]
       
OPTION:这是 split 命令的选项,用于控制如何分割文件。
INPUT:要分割的文件。如果省略,则从标准输入读取。
PREFIX:输出文件名的前缀。如果省略,则默认为 x。                     

选项说明

-数字:设置要分割的行数
-b, --bytes=SIZE:将文件分割为 SIZE 大小的文件块。SIZE 可以是以下单位之一:K, M, G, T, P, E, Z, Y(分别表示千字节、兆字节、吉字节等)。例如,-b 10M 将文件分割为 10MB 大小的文件。
-C, --line-bytes=SIZE:尝试将文件分割为 SIZE 大小的文件块,但尽量保持每行的完整性。
-l, --lines=NUMBER:将文件分割为每个文件包含 NUMBER 行的文件。
-a, --suffix-length=N:使用 N 个字符的后缀来生成输出文件名。默认是 2 个字符。
-d, --numeric-suffixes:使用数字后缀而不是字母后缀。这在使用 -a 选项时特别有用。
-t:设置间隔符。
--verbose:在输出文件名时显示进度信息。
--help:显示帮助信息。
--version:显示版本信息。

实践操作

0. 环境准备
mkdir -p /test/split
cd /test/split
yes "test" | head -c 30M > 30MB_file.txt
yes test |head -600 > 600line_file.txt
wc -l 600line_file.txt
ls -lh 30MB_file.txt

1. 默认分割以及指定分割行数
ls
seq 10 |split
ls
cat xaa
seq 10 |split -l 3
ls
head -v xa*
cat xa* >file1.txt
cat file1.txt
ls
rm -rf xa*
ls
split -5 file1.txt test_
ls
head -v test_a*

2. 将文件按大小分割为每个文件
ls -lh 30MB_file.txt
split -b 10M 30MB_file.txt 10MB_file.
ls -lh 10MB_file.a*

3. 将文件按行分割为每个文件
split -l 200 600line_file.txt 200line_file.
wc -l 200line_file.a*

4. 使用 3 个字符的数字后缀和每个文件 5MB 的大小来分割
split -b 5M -a 3 -d 30MB_file.txt 5M_file
ls -lh 5M_file.00*
ll
#注意:split 命令不会删除原始文件,只是创建新的分割文件。
#如果您需要删除原始文件,请使用其他命令(如 rm)手动执行此操作。

注意事项

1. 自定义输出文件的后缀格式

        使用 -a 和 -d 选项可以自定义输出文件的后缀格式。但除了数字后缀,你还可以结合其他字符或字符串来创建更有意义的文件名。

例如,如果你希望将文件分割为 part-001, part-002 等格式,你可以这样做:

split -b 1M -a 3 -d largefile.txt 'part-'

2. 保留原始文件的行完整性

        当使用 -b 选项时,split 命令可能会在行的中间进行分割,这可能会导致某些行被分割到两个或多个不同的文件中。如果你希望尽量保持每行的完整性,可以使用 -C 选项。但是请注意,这可能会导致某些文件的大小超过指定的 SIZE。

3. 过滤和重定向

        split 命令经常与其他命令(如 grep, awk, sed 等)结合使用,以便对分割后的文件进行进一步处理。你也可以使用重定向操作符(> 或 >>)将 split 的输出直接写入其他文件或设备。

4. 合并分割后的文件

        一旦你使用 split 命令将文件分割为多个部分,你可能需要再次将它们合并回原始文件。虽然 split 命令本身不提供合并功能,但你可以使用 cat 命令轻松实现这一点。

        例如,如果你将 largefile.txt 分割为 fileaa, fileab, fileac 等文件,你可以使用以下命令将它们合并回原始文件:

cat fileaa* > merged_largefile.txt

        注意:上述命令假设所有分割后的文件都以 fileaa 开头,并且你想要将它们全部合并。如果你的文件名模式不同,你需要相应地调整命令。

5. 处理大文件时的注意事项

        当处理非常大的文件时(特别是那些超过系统内存或磁盘空间限制的文件),你需要格外小心。确保你的系统有足够的资源来处理这些文件,并考虑使用其他工具或技术(如流式处理或分布式文件系统)来更有效地处理它们。

        最后,尽管 split 命令在处理大文件时非常有用,但它并不是唯一的解决方案。根据你的具体需求和环境,可能有其他更适合你的工具或方法。

实验3-统计某电商网站买家收藏商品数量 现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“\t”分割,样本数据及格式如下: 1.买家id 商品id 收藏日期 2.10181 1000481 2010-04-04 16:54:31 3.20001 1001597 2010-04-07 15:07:52 4.20001 1001560 2010-04-07 15:08:27 5.20042 1001368 2010-04-08 08:20:30 6.20067 1002061 2010-04-08 16:45:33 7.20056 1003289 2010-04-12 10:50:55 8.20056 1003290 2010-04-12 11:57:35 9.20056 1003292 2010-04-12 12:05:29 10.20054 1002420 2010-04-14 15:24:12 11.20055 1001679 2010-04-14 19:46:04 12.20054 1010675 2010-04-14 15:23:53 13.20054 1002429 2010-04-14 17:52:45 14.20076 1002427 2010-04-14 19:35:39 15.20054 1003326 2010-04-20 12:54:44 16.20056 1002420 2010-04-15 11:24:49 17.20064 1002422 2010-04-15 11:35:54 18.20056 1003066 2010-04-15 11:43:01 19.20056 1003055 2010-04-15 11:43:06 20.20056 1010183 2010-04-15 11:45:24 21.20056 1002422 2010-04-15 11:45:49 22.20056 1003100 2010-04-15 11:45:54 23.20056 1003094 2010-04-15 11:45:57 24.20056 1003064 2010-04-15 11:46:04 25.20056 1010178 2010-04-15 16:15:20 26.20076 1003101 2010-04-15 16:37:27 27.20076 1003103 2010-04-15 16:37:05 28.20076 1003100 2010-04-15 16:37:18 29.20076 1003066 2010-04-15 16:37:31 30.20054 1003103 2010-04-15 16:40:14 31.20054 1003100 2010-04-15 16:40:16 要求编写MapReduce程序,统计每个买家收藏商品数量,并撰写实验报告。直接给出完整的代码即可
03-28
<think>好的,我现在需要帮助用户解决他们的实验问题,也就是统计电商网站每个买家收藏商品的数量,并编写MapReduce程序。首先,我得仔细理解用户的需求。 用户提供的样例数据有三个字段:买家id、商品id和收藏日期,用制表符分隔。目标是统计每个买家收藏了多少个不同的商品。这里需要注意的是,可能同一个买家会多次收藏同一个商品,所以是否需要去重呢?根据用户的要求,是“收藏商品数量”,通常这种情况下是统计每个买家收藏的商品数量,而不是次数,所以可能需要去重。但用户给出的样例数据中,例如买家20056在2010-04-15多次收藏不同的商品id,可能每个商品id是唯一的。但为了保险起见,可能需要确认是否需要去重。不过根据问题描述,可能直接统计每个买家的记录数即可,但用户可能需要的是每个买家收藏了多少个不同的商品,这时候应该去重。比如,如果同一买家收藏同一商品多次,只算一次。 所以,我得确定处理逻辑。在Map阶段,应该输出买家id和商品id作为键值对吗?或者,是否需要将买家id作为键,商品id作为值,然后在Reduce阶段进行去重统计? 正确的做法应该是将买家id作为键,商品id作为值,然后在Reducer中对每个买家对应的所有商品id进行去重计数。或者,也可以在Map阶段直接输出买家id和商品id的组合作为中间键,这样在Reducer中可以更高效地统计。或者,在Mapper中输出复合键(买家id,商品id),然后在Reducer中统计每个买家的不同商品数量。 不过,在MapReduce中,通常的做法是在Mapper中输出键值对,其中键是用于分组的字段,而值是需要处理的数据。为了统计每个买家的不同商品数,我们需要将每个买家id和商品id的组合作为中间键,以确保相同的买家和商品只计数一次。但MapReduce会自动将相同的键分到同一个Reducer中,所以如果以(买家id,商品id)作为键,在Reducer中每个键只会出现一次,这样可以统计每个买家有多少个不同的商品id。或者,可以在Mapper中发送买家id作为键,商品id作为值,然后在Reducer中使用一个集合(Set)来去重商品id的数量。 两种方法各有优劣。第一种方法,使用复合键的话,可能需要一个Combiner来优化,或者在Reducer中直接统计每个买家对应的不同商品数量。而第二种方法,Reducer需要维护一个集合来存储商品id,这可能在数据量大的时候导致内存问题。因此,更高效的方法可能是在Mapper中将买家id作为键,商品id作为值,然后在Reducer中使用一个HashSet来去重,最后统计数量。 但是,对于大规模数据来说,使用HashSet可能会消耗较多内存,特别是当某个买家收藏了上百万商品时。这时候可以考虑使用布隆过滤器或者其他结构,但对于这个实验来说,假设数据量不大,直接用HashSet是可行的。 接下来,我需要编写Map和Reduce的代码。对于Mapper来说,需要读取每一行,分割出买家id和商品id,然后将买家id作为key,商品id作为value发送出去。但是需要注意,可能同一买家在同一商品上有多次收藏,所以需要在Reducer中进行去重。 所以Mapper的输出是(买家id,商品id),然后Reducer接收到同一个买家id的所有商品id,将它们放入一个集合中,最后统计集合的大小。 但是,在MapReduce中,如果每个商品id对应同一个买家id,那么在Reducer中,可以通过将商品id添加到一个HashSet中,自动去重,然后统计数量。 现在,针对代码部分,用户要求的是完整的代码,包括MapReduce的Java代码。所以需要写出Mapper类、Reducer类,以及驱动程序的设置。 需要注意的是,输入文件的格式是用制表符分割的三个字段,所以需要正确分割每行数据。此外,要处理可能的异常,比如行数据不符合格式的情况,但实验可能假设数据都是正确的。 Mapper的逻辑: 读取每一行,分割成三个部分:买家id、商品id、日期。然后输出key为买家id,value为商品id。 Reducer的逻辑: 对于每个买家id,收集所有的商品id,存入一个HashSet中,然后输出买家id和HashSet的大小。 同时,需要注意在Hadoop中,Mapper和Reducer的输入输出类型。通常,使用Text作为键和值的类型。所以Mapper的输出是Text(买家id)作为key,Text(商品id)作为value。Reducer的输出是Text(买家id)和IntWritable(数量)。 现在编写具体的代码: Mapper类: public static class TokenizerMapper extends Mapper<Object, Text, Text, Text> { private Text buyerId = new Text(); private Text itemId = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] parts = value.toString().split("\t"); if (parts.length >= 3) { String bid = parts[0].trim(); String item = parts[1].trim(); buyerId.set(bid); itemId.set(item); context.write(buyerId, itemId); } } } Reducer类: public static class IntSumReducer extends Reducer<Text, Text, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { Set<String> uniqueItems = new HashSet<>(); for (Text val : values) { uniqueItems.add(val.toString()); } result.set(uniqueItems.size()); context.write(key, result); } } 驱动程序: public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "buyer favorite count"); job.setJarByClass(BuyerFavoriteCount.class); job.setMapperClass(TokenizerMapper.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); // Mapper的输出value类型是Text // 因为Reducer的输入是Text和Text,所以需要设置Map输出的key和value类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); // Reducer的输出是Text和IntWritable job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } 需要注意的是,驱动程序中需要正确设置Mapper和Reducer的输出类型。因为Reducer的输出key是Text,value是IntWritable,所以job.setOutputKeyClass和setOutputValueClass应该对应。而Mapper的输出key和value是Text和Text,所以需要单独设置setMapOutputKeyClass和setMapOutputValueClass。 在Hadoop中,如果Mapper和Reducer的输出类型不一致,必须明确设置。比如,Reducer的输出是Text和IntWritable,而Mapper的输出是Text和Text,所以需要分别设置。 这样,整个程序就可以正确统计每个买家的不同商品数量。例如,在样例数据中,买家20056有多个收藏记录,但可能收藏不同的商品id,所以Reducer会将它们去重后统计数量。 最后,用户可能需要这个程序的完整代码,包括import语句和类定义。所以需要补全这些部分。 完整的Java代码如下: import java.io.IOException; import java.util.HashSet; import java.util.Set; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class BuyerFavoriteCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, Text> { private Text buyerId = new Text(); private Text itemId = new Text(); @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] parts = value.toString().split("\t"); if (parts.length >= 3) { String bid = parts[0].trim(); String item = parts[1].trim(); buyerId.set(bid); itemId.set(item); context.write(buyerId, itemId); } } } public static class IntSumReducer extends Reducer<Text, Text, Text, IntWritable> { private IntWritable result = new IntWritable(); @Override public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { Set<String> uniqueItems = new HashSet<>(); for (Text val : values) { uniqueItems.add(val.toString()); } result.set(uniqueItems.size()); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "buyer favorite count"); job.setJarByClass(BuyerFavoriteCount.class); job.setMapperClass(TokenizerMapper.class); job.setReducerClass(IntSumReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } 这样,用户就可以将这个代码编译打包成JAR文件,在Hadoop集群上运行,输入路径和输出路径作为参数传入。运行结果会得到每个买家id对应的收藏商品数量,且已经去重。</think>以下是完整的MapReduce程序代码,用于统计每个买家收藏商品数量: ```java import java.io.IOException; import java.util.HashSet; import java.util.Set; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class BuyerFavoriteCount { public static class FavoriteMapper extends Mapper<Object, Text, Text, Text> { private Text buyerId = new Text(); private Text itemId = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String[] fields = value.toString().split("\t"); if (fields.length >= 3) { buyerId.set(fields[0].trim()); itemId.set(fields[1].trim()); context.write(buyerId, itemId); } } } public static class FavoriteReducer extends Reducer<Text, Text, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<Text> values, Context context ) throws IOException, InterruptedException { Set<String> uniqueItems = new HashSet<>(); for (Text val : values) { uniqueItems.add(val.toString()); } result.set(uniqueItems.size()); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Buyer Favorite Count"); job.setJarByClass(BuyerFavoriteCount.class); job.setMapperClass(FavoriteMapper.class); job.setReducerClass(FavoriteReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` ### 代码说明 1. **Mapper阶段**: - 输入格式:`<行偏移量, 文本行>` - 解析每行数据,提取买家ID和商品ID - 输出键值对:`<买家ID, 商品ID>` 2. **Reducer阶段**: - 使用HashSet对商品ID进行去重 - 统计唯一商品数量 - 输出格式:`<买家ID, 收藏商品数量>` 3. **程序特征**: - 处理数据格式:TSV文本文件 - 自动过滤不符合格式的记录 - 精确统计唯一商品数量(自动去重) ### 执行方式 1. 将代码打包为JAR文件 2. 在Hadoop集群执行命令: ```shell hadoop jar BuyerFavoriteCount.jar /input/path /output/path ``` ### 输出结果示例 ``` 10181 1 20001 2 20042 1 20054 5 20055 1 ... ``` 每个买家ID后面对应其收藏的唯一商品数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linuxxiaocaizi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值