国产之光-海豚调度器的入门知识篇

目录

概念和定义

核心特性

核心组件

工作流程

环境准备

系统软件方面

硬件方面

部署方式

单机模式

伪集群模式

集群模式

基本配置

工作流定义

调度管理

定时调度

手动调度

监控告警

任务类型扩展

资源管理

权限控制


概念和定义

Apache DolphinScheduler是一个 分布式、去中心化的可视化DAG工作流任务调度系统 ,专为企业级大数据处理场景设计。它采用 DAG (Directed Acyclic Graph) 结构组织任务,有效解决了复杂的数据任务依赖关系问题。DolphinScheduler的核心优势在于其 高可靠性和可扩展性 ,支持多租户和在线资源管理,能够稳定处理每日高达10万次的数据任务。

该系统广泛应用于 数据研发ETL流程 中,特别擅长处理复杂的任务依赖关系,同时提供全面的任务监控和管理功能,如重试、恢复、暂停和终止等操作。DolphinScheduler的这些特性使其成为大数据处理领域的重要工具,尤其适合需要频繁协调大量异构任务的企业环境。

核心特性

Apache DolphinScheduler作为一个强大的大数据任务调度系统,拥有多个关键特性,使其能够在复杂的企业环境中脱颖而出。这些特性不仅体现了系统的灵活性和适应性,还展示了其在大规模数据处理方面的卓越表现:

  1. 高可靠性
    Do

### 海豚调度器的工作流程与使用方法 #### 工作流程概述 海豚调度器是一种分布式任务调度框架,主要用于管理和执行复杂的批处理任务。其核心工作流程可以分为以下几个方面: 1. **任务定义** 用户通过图形化界面或者脚本文件定义任务及其依赖关系。这些任务可能涉及数据处理、ETL操作或其他计算逻辑[^1]。 2. **任务提交与分发** 定义好的任务会被提交至 `api-server` 进行解析并存储到数据库中。随后,任务被分配给相应的节点(如 Master 和 Worker),以便进一步执行[^2]。 3. **资源管理与调度** 在集群环境中,Master 节点负责协调多个 Worker 的运行状态以及任务的优先级安排。Zookeeper 则用于监控整个系统的健康状况和各组件之间的通信情况[^3]。 4. **任务执行与反馈** 各个 Worker 接收到具体任务后开始实际运算过程;完成后会向 Master 报告结果,并更新日志记录供后续审计或排查错误之用。 5. **异常处理机制** 如果某个阶段出现问题,则触发重试策略或是人工介入干预措施来保障整体业务连续性。此外还提供了补数功能支持未完成部分重新加载或修正历史数据。 #### 使用教程概览 以下是基于官方文档整理的一个简化版入门指南: - **环境准备** - 下载最新版本软件包。 - 准备好 MySQL 数据库作为元数据仓库,并上传对应的 JDBC 驱动程序到指定目录下。 ```bash cp mysql-connector-java-8.x.jar /path/to/dolphinscheduler/api-server/libs/ ``` - **安装部署** - 解压压缩包并将配置文件调整适配本地网络条件。 - 初始化表结构并通过命令启动服务端口监听进程。 - **创建项目&作业流图设计** - 登陆 Web 控制台新建专属命名空间下的首个工程实例名称。 - 添加各类节点类型比如 Shell Script 或者 Spark Application 等构成完整的 DAG 图形表示形式。 - **测试验证效果展示** - 设置定时计划表达式让系统自动周期循环调用预设规则集。 - 查看实时进度条变化趋势曲线图表呈现清晰明了的结果分析报告页面布局样式美观大方实用性强! ```python from pydolphin import DolphinSchedulerClient client = DolphinSchedulerClient(host="localhost", port=12345, username="admin", password="password") project_name = "example_project" workflow_name = "my_first_workflow" # Create a new project if it doesn't exist already. if not client.project_exists(project_name): client.create_project(project_name) tasks = [ {"name": "task_1", "type": "SHELL", "command": "echo Hello World"}, ] definition_id = client.define_process_definition(workflow_name, tasks) instance_id = client.start_instance(definition_id) status = client.query_instance_status(instance_id) print(f"Instance {instance_id} status is {status}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值