大模型LangChain面试题及参考答案(上)

目录

LangChain 的整体架构设计包括哪几层,分别起到什么作用?

LangChain 中的“链(Chain)”与“组件(Component)”概念有何区别?

LangChain 支持哪几种主要的大模型接入方式?

LangChain 如何处理模型调用的上下文状态(Memory)?

LangChain 中的 PromptTemplate 如何与 Chain 配合使用?

LangChain 如何将多步调用组合为一个链式流程?

如何使用 LangChain 实现 Function Calling?

1. 定义可调用的工具函数

2. 配置函数调用的解析器

3. 构建包含函数调用逻辑的链

4. 处理多轮函数调用

5. 错误处理与格式校验

LangChain 中 LLMChain、SequentialChain 和 SimpleSequentialChain 有哪些异同?

LangChain 中 CallbackManager 的作用是什么?它能实现哪些扩展功能?

LangChain 如何支持 OpenAI function calling 与工具(Tool)结合?

LangChain 的 serialization(保存/加载链)是如何实现的?

LangChain 支持的运行环境有哪些?对 Serverless 和微服务支持如何?

LangChain 中如何对 Prompt 的输入和输出进行 Schema 校验?

LangChain 支持哪些可视化工具或监控手段?

LangChain 中 PromptTemplate 的变量替换机制是如何实现的?

如何设计具有多轮记忆的 PromptTemplate?

LangChain 如何支持 Zero-shot 与 Few-shot Prompting?

如何使用 FewShotPromptTemplate 进行示例提示优化?

如何在 Prompt 中嵌入多个动态上下文变量?

LangChain 是否支持 YAML/JSON 格式的 Prompt 配置?如何使用?

LangChain 的整体架构设计包括哪几层,分别起到什么作用?

LangChain 中的“链(Chain)”与“组件(Component)”概念有何区别?

LangChain 支持哪几种主要的大模型接入方式?

LangChain 如何处理模型调用的上下文状态(Memory)?

LangChain 中的 PromptTemplate 如何与 Chain 配合使用?

LangChain 的整体架构设计包括哪几层,分别起到什么作用?

LangChain 中的“链(Chain)”与“组件(Component)”概念有何区别?

LangChain 支持哪几种主要的大模型接入方式?

LangChain 如何处理模型调用的上下文状态(Memory)?

一、记忆类型与适用场景

二、记忆与链的集成机制

三、记忆的持久化与扩展

四、记忆的动态管理策略

五、记忆在代理(Agent)中的应用

LangChain 中的 PromptTemplate 如何与 Chain 配合使用?

一、PromptTemplate的核心作用与结构

二、PromptTemplate在Chain中的集成方式

三、动态变量填充与流程控制

四、PromptTemplate的扩展与自定义

五、最佳实践:提示词工程与链设计的结合


LangChain 的整体架构设计包括哪几层,分别起到什么作用?

LangChain 的整体架构设计可划分为基础层、核心层、应用层三大层级,各层通过有机协作实现大模型应用的开发与落地。

基础层是整个架构的底层支撑,主要包含

### 关于 LangChain 的常见面试问题及答案 #### 1. **什么是 LangChain?** LangChain 是一种用于开发基于大型语言模型(LLMs)的应用程序框架。它提供了一组工具和库,帮助开发者更轻松地集成 LLMs 到他们的应用程序中[^1]。 #### 2. **LangChain 包含哪些部分?** LangChain 主要由以下几个核心组件构成: - **Prompt Templates**: 提供灵活的方式来定义和管理提示语句。 - **Models**: 支持多种预训练语言模型的调用接口。 - **Memory**: 实现对话历史记录功能,使模型能够记住之前的交互内容。 - **Chains**: 将多个操作串联起来形成复杂的流程逻辑。 - **Agents**: 赋予模型自主决策能力以完成特定任务。 - **Vector Stores and Embeddings**: 处理向量化数据存储以及相似度检索等问题。 #### 3. **LangChain 中 Chat Message History 是什么?** Chat Message History 是指在多轮对话过程中保存下来的上下文信息集合。这些消息被用来维持会话连贯性和一致性,从而让 AI 更好理解当前讨论主题背景及其演变过程。 #### 4. **介绍一下 LangChain Agent?** AgentLangChain 中的一个重要概念,表示具有某种行为模式或目标导向性的实体。它可以是一个简单的函数调用者也可以是复杂系统中的组成部分之一。通过设定不同的策略算法,agent 可自动执行一系列动作直至达到预期目的为止。 #### 5. **LangChain 如何处理 Embedding 和 Vector Store?** Embedding 技术将文本转换成固定长度数值型特征向量形式以便计算机理解和计算;而 vector stores 则是用来高效管理和查询这些高维空间里对象位置关系的数据结构。LangChain 提供了相应模块支持此两项关键技术实现。 #### 6. **LangChain 存在哪些问题及解决办法?** 尽管 LangChain 功能强大,但在实际应用中仍可能遇到一些挑战,比如性能瓶颈、安全性隐患等。针对这些问题,可以通过优化代码架构设计、加强访问控制机制等方式加以改善[^2]。 ```python from langchain import PromptTemplate, OpenAI, LLMChain template = """Question: {question} Answer: Let me think step-by-step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=OpenAI()) ``` 上述代码片段展示了如何创建一个基本的 LLM Chain 来解答问题。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值