大模型强化学习(RL)面试题及参考答案

目录

什么是强化学习(RL),它与监督学习和无监督学习的根本区别?

RL 中的 agent、environment、state、action、reward 各指什么?

Markov 决策过程(MDP)的四个关键要素是什么?

policy、value function、action-value function 的概念与作用分别是什么?

on‑policy 方法与 off‑policy 方法的区别?举例说明。

Model‑based 和 model‑free 强化学习有何差异?

PPO(Proximal Policy Optimization)的核心思想是什么?

为什么 PPO 会限制 policy 更新?这样做的目的是什么?

PPO 中 KL divergence 如何体现?为何不直接用 TRPO 的方法?

PPO 相对于 TRPO 的优势与劣势?

PPO 在 OpenAI、游戏或机器人控制中为何被广泛使用?

Actor–Critic 架构是如何设计的?actor 和 critic 的职责是什么?

什么是 DPO(Direct Preference Optimization)?它为何出现?

DPO 与 PPO 相比,去掉了哪些环节?为什么?

DPO 在 alignment 时相比 PPO 的优劣势?

实验显示 PPO 在某些 RLHF 基准(如对话、代码生成)表现更好是为什么?

强化学习中的 RLHF(RL from Human Feedback)常有哪些阶段?

阶段一:预训练(Pretraining)

阶段二:监督微调(Supervised Fine-Tuning, SFT)

阶段三:奖励模型训练(Reward Model Training)

阶段四:强化学习优化(Reinforcement Learning Optimization)

阶段五:人类反馈迭代(Human Feedback Iteration)

阶段间的依赖与挑战

human preference 数据的特点与限制在哪里?

在 RLHF 中,为什么价值估计(value function)会被训练?

RLHF 的瓶颈(如昂贵、高偏见)有哪些?如何缓解?

TRPO 与 PPO 的核心区别?

IEM-PPO(增强探索 PPO)改动重点在哪?

为什么 PPO 在连续动作空间、稀疏奖励问题上表现良好?

policy gradient 方法收敛性为何不稳定?解决方案有哪些?

在 deep RL 中,为什么需要 target network、entropy bonus、梯度裁剪等机制?

PPO 在机器人控制中的应用示例

强化学习在对话系统或文本生成中的应用(RLHF)

PPO 如何用于 AlphaGo 或 OpenAI Five?

DPO 在文本 alignment 中常见案例有哪些?

PPO 在 Atari 游戏中使用哪些技巧提高性能?

在 MuJoCo 连续控制任务中,PPO 的效果与优势?

RLHF 如何用于生成有价值的摘要或编程?

RL 在无人驾驶和推荐系统中的典型用法?

 Safe RL 在自动驾驶或医疗诊断中的具体场景?

在资源分配、金融交易中如何设计 reward 使 RL 有效?

 PPO 的关键超参数有哪些?如何调优?

 DPO 的数据收集、偏好标注规模该如何选?

RLHF 训练时 reward model 验证与 early stopping 如何设计?

RL agent 训练过程可能出现的稳定性问题有哪些?如何检测?

如何判断 PPO 是否陷入局部最优或模式崩溃?

DPO 中避免过拟合偏好数据的方法有哪些?

RLHF pipeline 中日志记录、指标监控常用哪些?

如何设计 online/offline 策略评估?

Online 策略评估(在线评估)

Offline 策略评估(离线评估)

PPO 和 DPO 在 GPU 或分布式训练时的资源瓶颈有哪些?

一、PPO 在 GPU 训练中的资源瓶颈

二、PPO 在分布式训练中的资源瓶颈

三、DPO(直接策略优化)的资源瓶颈特性

四、典型瓶颈对比与优化方向


什么是强化学习(RL),它与监督学习和无监督学习的根本区别?

强化学习是一种机器学习范式,其核心思想是让智能体(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型大数据攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值