
Spark/Flink/Doris离线&实时数仓开发
文章平均质量分 89
本人长期从事大数据开发,从0到1做过多个互联网和政府类的数据仓库项目开发。本专栏介绍从0到1搭建数据仓库的过程,分享数据仓库开发过程遇到各种问题和如何优化,小白用户也能快速成为中高级的数仓开发工程师。
Doris来替代hive存储数据,可以解决hive占用存储空间大和ADS层查询慢等痛点。
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
大模型大数据攻城狮
在阿里巴巴等多种类型公司工作过,第一份工作是在大厂做移动开发,后来在创业公司由于团队需要做后台开发、嵌入式开发等几乎全栈开发,最近这些年还保持必要全栈开发,精力更多在大数据、大模型等领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《Spark/Flink/Doris离线&实时数仓开发》目录
欢迎加入《Spark/Flink/Doris离线&实时数仓开发》付费专栏!本专栏专为大数据工程师、数据分析师及准备大数据面试的求职者量身打造,聚焦Spark、Flink、Doris等核心技术,覆盖离线与实时数仓开发的全流程。无论你是想快速上手项目、提升技术能力,还是在面试中脱颖而出,这里都能为你提供。原创 2025-05-24 15:21:55 · 1259 阅读 · 0 评论 -
MPP数据库选型指南:Doris与ClickHouse全方位对比
选定了数据库,性能调优就是让它跑得更快、更稳的“秘密武器”。Doris和ClickHouse就像两匹赛马,调优得当,能让它们在赛道上飞驰!下面我们分享两者的实用调优技巧,结合真实案例,帮你把性能发挥到极致。原创 2025-08-07 00:05:01 · 311 阅读 · 0 评论 -
计算用户日活:从数据设计到可视化的全流程(高频场景题)
用户日活跃量(DAU,Daily Active Users)是互联网产品的命脉指标,简单说,就是一天内有多少用户真正“动”了你的产品。但“动”是个模糊词,具体指什么?是打开App就算?还是得完成一次核心操作,比如发条微博、刷个短视频、点个外卖?定义日活的第一步,就是把这个“动”掰扯清楚。见过一个创业团队,把“打开App”就算日活,结果数据好看得很,但用户打开后秒退,压根没用核心功能。后来他们改成“完成一次搜索或购买”,日活数据腰斩,但真实反映了用户粘性。定义日活得贴合产品目标,不然就是自欺欺人。原创 2025-08-04 00:09:29 · 777 阅读 · 0 评论 -
ECharts从入门到精通:解锁数据可视化的魔法世界
想让标题更大胆?柱子更立体?title: {text: '高颜值柱状图',},series: [{}]效果:标题粗大白,柱子带点阴影,瞬间高端大气!嫌内置主题不够独特?可以自己定义主题!});小技巧:用在线工具(比如ECharts主题编辑器)调色,省时又省力。想让图表更有创意?graphic组件能让你绘制自定义图形,甚至加点动画效果。x: 100,y: 100,{ percent: 1, rotation: Math.PI * 2 } // 旋转一周],}],效果。原创 2025-07-31 00:03:01 · 451 阅读 · 0 评论 -
深入剖析 Spark Shuffle 机制:从原理到实战优化
默认情况下,Shuffle 文件由 Executor 提供,Reduce 任务通过 Executor 的 BlockManager 拉取数据。但如果 Executor 因为 OOM 或 GC 被杀死,Shuffle 文件也会丢失,导致整个 Stage 重跑。外部 Shuffle 服务将 Shuffle 文件的管理交给一个独立的进程,Executor 挂了也不影响数据可用性。原创 2025-07-31 00:03:23 · 660 阅读 · 0 评论 -
数据江湖的“三国演义”:数据仓库、数据湖与湖仓一体的全景对比
一家流媒体公司(如某“网飞”)用AWS S3搭建了数据湖,存储用户观看记录(JSON格式)、视频元数据(CSV)和用户上传的评论(文本)。:数据仓库要求数据在进入之前就得“洗白白”,通过ETL(Extract, Transform, Load)流程,把原始数据整理成统一的格式,存入关系型数据库(如Oracle、Snowflake)。如果说数据仓库是整齐的图书馆,数据湖(Data Lake)就是一片未经开发的原始丛林,数据以原始形态存储,自由度极高,适合各种“野蛮生长”的数据处理需求。原创 2025-07-28 00:05:01 · 682 阅读 · 0 评论 -
Flink CEP 动态模板与规则动态修改实践完全手册
"start": {"times": {"min": 1,"max": 10},},"message": "用户 {event.userId} 触发高额交易报警,累计金额: {aggregate.amount}"解析事件类型:只匹配 TRANSACTION 事件。条件:单笔交易金额 ≥ 1 万元。聚合逻辑:5 分钟内累计金额超 10 万元。动作:触发报警,推送消息到 Kafka。原创 2025-07-24 00:15:28 · 743 阅读 · 0 评论 -
Flink高频考点:Checkpoint与Savepoint的高可用实战指南
默认情况下,Flink使用Kryo序列化状态,但对于复杂对象,可能需要自定义序列化器以提高性能或兼容性。// 构造函数、getter、setter略@Override@Override// 其他方法实现略效果:自定义序列化器减少了序列化开销,特别适合复杂对象或高频Checkpoint场景。原创 2025-07-21 00:02:42 · 670 阅读 · 0 评论 -
用 Flink CEP 打造实时规则引擎:从理论到实战的全面指南
如果用户在浏览商品后10秒内没下单,就推送一个优惠券提醒!听起来简单,但背后需要实时监控用户行为、匹配特定事件序列,还要保证低延迟和高吞吐。这时候,Flink 的复杂事件处理(Complex Event Processing,简称 CEP)就派上用场了。Flink CEP 是 Apache Flink 提供的一个强大库,专门为处理无限事件流中的模式匹配而生。它能从海量数据流中识别出符合特定规则的事件序列,像是正则表达式在字符串上的匹配,但这次是在实时数据流上跳舞。原创 2025-07-17 00:00:49 · 742 阅读 · 0 评论 -
阿里云MaxCompute SQL与Apache Hive区别面面观
MaxCompute(原名ODPS)是阿里云的明星产品,专为PB级数据分析打造,号称“零运维、开箱即用”。Hive则是Hadoop生态的元老,靠着HQL(Hive Query Language)让无数开发者用SQL操作HDFS上的数据。表面上看,它们都是“SQL友好”的数据仓库,但内核的差异决定了它们的适用场景和性能表现。接下来,我们会从架构设计、SQL语法、执行引擎、源码调用流程到类结构,逐一揭开它们的面纱。要搞清楚MaxCompute和Hive的区别,先得从它们的“骨架”——系统架构说起。Hive诞生于原创 2025-07-11 08:45:53 · 673 阅读 · 0 评论 -
MaxCompute数据迁移至OSS完全指南
Tunnel SDK和OSS SDK都支持日志记录,结合SLF4J或Log4j可以实现细粒度的性能监控。try {try {// 每1000条记录日志一次源码解析Logger:SLF4J的日志接口,记录迁移进度、错误和性能指标。:逐行读取MaxCompute数据,hasNext和next方法支持流式处理。:OSS的流式上传接口,适合大文件传输。监控逻辑:每1000条记录计算一次速度,捕获异常并记录错误,迁移结束后输出总结。优化技巧采样频率。原创 2025-07-08 00:10:04 · 1131 阅读 · 0 评论 -
MapReduce数据处理过程2万字保姆级教程
使用 Combiner 时,监控 mapreduce.job.combine.input.records 和 mapreduce.job.combine.output.records 指标,检查数据压缩效果。源码中,Combiner 的调用在 MapOutputBuffer.spill 中,前面已分析过。:核心逻辑在 org.apache.hadoop.yarn.client.api.YarnClient 和 org.apache.hadoop.mapreduce.v2.app.MRAppMaster。原创 2025-07-07 00:01:57 · 587 阅读 · 0 评论 -
这才叫窗口查询!TDEngine官方文档没讲透的实战玩法
场景设定:假如你有一张超级表metersCREATE TABLE meter001 USING meters TAGS ("A栋1单元", 1);CREATE TABLE meter002 USING meters TAGS ("A栋2单元", 1);...现在你想统计这栋楼里每个相位(phase)的平均电压变化趋势,每15分钟为一个窗口,每小时滚动一次。然后你发现结果“怪怪的”:有的时间段缺数据;某些phase没出现在结果里;数据数量不稳定。问题在哪?是。原创 2025-07-04 00:11:23 · 659 阅读 · 0 评论 -
线上作业一挂就懵逼?Flink 容错机制全景解析来了!
实现 TwoPhaseCommitSinkFunction,用临时表模拟事务写入。原创 2025-07-03 00:08:02 · 546 阅读 · 0 评论 -
搞懂 Flink Watermark,只需看这一篇:乱序流处理全解密
Watermark是Flink中一种特殊的时间标记,携带了一个时间戳,告诉系统某个时间点之前的数据可以被“安全”处理。它本质上是一种数据结构,包含一个时间戳(long类型),由用户或Flink自动生成,穿插在数据流中,与普通数据元素一起流动。别看代码简单,Watermark的威力全在它的使用逻辑上。它会随着数据流在算子间传递,通知每个算子:当前可以处理的时间范围。如果内置策略不能满足需求,你可以实现自己的WatermarkStrategy。@Override// 5秒乱序@Override。原创 2025-07-02 07:50:48 · 421 阅读 · 0 评论 -
用Flink打造实时数仓:生产环境中的“坑”与“解药”
使用Flink的StreamingFileSink配置合理的滚动策略(如基于文件大小或时间),合并小文件。代码示例。原创 2025-06-30 00:02:25 · 704 阅读 · 0 评论 -
DataX 实现 Doris 和 MySQL 双向同步完全指南
作为一名在大数据运维领域摸爬滚打多年的老兵,我深知数据同步在企业级应用中的重要性。今天咱们就来聊聊如何用 DataX 这个阿里开源的数据同步工具,实现 Doris 和 MySQL 之间的双向数据同步。说实话,刚开始接触 DataX 的时候,我也是一头雾水。但经过这几年的实战,发现这玩意儿确实好用,特别是在处理异构数据源同步的时候,简直就是神器。原创 2025-06-23 00:03:46 · 1405 阅读 · 0 评论 -
线上Doris挂了咋办?这套自动重启+备份+切主脚本能让你睡个安稳觉!
别以为监控就是装个Prometheus、挂个Grafana。稳定性保障体系包括:自动检测 FE (Leader + Follower) 是否挂掉自动判断是否需要执行 metadata recovery自动判断 BE 是否存活并重启每天定时备份doris-meta元数据,备份不丢才是真的可恢复日志留痕,方便排查问题链Follower 脚本必须比 Master 脚本更“保守”。若集群多个 Follower 节点同时掉线,不要一股脑都启动,先确认 Leader 的状态。原创 2025-06-17 07:23:14 · 1001 阅读 · 0 评论 -
使用TDEngine REST API + Python来计算电力指标的ETL真实案例
在大数据时代,时序数据的处理已成为核心需求。从物联网传感器数据到金融交易记录,时序数据无处不在。本文是企业生产实践的真实案例,从时序数据库TDEngine读取数据,进行补点操作后,进行求和计算结果,最后把计算结果写入到mysql,可用于离线数仓。原创 2025-06-02 06:26:36 · 1152 阅读 · 0 评论 -
每天分钟级别时间维度在数据仓库的作用与实现——以Doris和Hive为例(开箱即用)
在现代数据仓库建设中,是不可或缺的基础维表之一。尤其是在金融、电力、物联网、互联网等行业,对于高频数据的统计、分析、报表、数据挖掘等场景具有极其重要的作用。本文将以为例,详细讲解每天分钟级别时间维度表在数据仓库中的,帮助读者全面理解并掌握分钟级别时间维度表的设计与落地。原创 2025-05-23 07:21:09 · 1113 阅读 · 0 评论 -
海豚调度器工作流状态监控 + 报表生成情况邮件报告系统— 一套让你早上睁眼就知道离线数仓有没有崩的神器(即拿即用)
做为打工人,如果离线数仓在晚上跑崩了,没有第一时间知道并介入处理,等到上班时领导或业务要看报表时看不到,这就是一个工作事故。有了这款早上睁眼可以看离线数仓报告神器,如果早上一起床不用打开电脑各种登录,轻松在手机看一下情况,有问题及时处理,没问题轻轻松松去上班。还在每天靠手工登录海豚调度器,看着一堆任务列表苦哈哈地找异常?还在被领导催着汇报“昨天的工作流到底跑没跑完”?还在因为VPN、内网限制,周末也得爬起来开电脑看报表?这些痛苦,我都懂。原创 2025-05-15 00:00:45 · 977 阅读 · 0 评论 -
零售行业中如何通过数据分析优化选品策略
在零售行业,选品策略直接决定了企业的成败。面对琳琅满目的商品选择和瞬息万变的市场需求,零售商常常陷入两难:库存积压导致资金周转困难,或者热销商品断货错失销售机会。这种挑战在竞争日益激烈的市场环境中尤为突出,尤其是在电商与实体店并存的时代,消费者需求的多样性和个性化趋势让选品变得更加复杂。如何精准预测市场需求,优化商品组合,成为摆在每一位零售从业者面前的难题。数据分析的出现,为解决这一困境提供了强有力的工具。原创 2025-05-08 00:01:18 · 434 阅读 · 0 评论 -
大数据实时数仓的数据质量监控解决方案
实时数仓,简而言之,是一种能够以极低延迟处理和分析大规模数据的系统。与传统数据仓库主要处理历史数据、依赖批量ETL(Extract-Transform-Load)流程不同,实时数仓强调数据的即时性,支持从数据生成到分析结果输出的全流程在毫秒到秒级完成。它的核心价值在于为企业提供“实时洞察”,即在数据生成的同时快速转化为可执行的业务价值。以电商平台为例,实时数仓可以根据用户浏览和购买行为,动态调整推荐算法,确保用户在几秒内看到最相关的商品。这种能力直接影响用户体验和转化率。原创 2025-05-05 00:00:44 · 2011 阅读 · 0 评论 -
数仓开发必懂:如何建立精细化运营的指标体系
精细化运营是一种以数据为核心、以流程为骨架、以用户价值为导向的管理理念。它强调对业务的全链条进行深度剖析,将每一个环节的投入与产出进行量化评估,从而实现资源的最优配置和效果的最大化。与之相对的传统运营模式往往依赖经验判断和粗放式管理,而精细化运营则通过系统化的指标、工具和方法,将决策从“拍脑袋”转向“靠数据说话”。从本质上看,精细化运营是一种“拆解与重组”的过程。原创 2025-04-28 00:05:11 · 1335 阅读 · 0 评论 -
大数据面试高阶情景题:如何实现数据脱敏又不影响分析精度
数据脱敏,简而言之,是指通过技术手段对原始数据中的敏感信息进行处理,使其在特定场景下无法直接识别或关联到具体个体或实体,同时尽量保留数据的某些特性以支持后续分析或应用。这一过程可以被视为一种“数据伪装”,其核心目标在于降低数据泄露的风险,保护个人隐私或商业机密。具体而言,数据脱敏可以通过多种方式实现,例如将真实姓名替换为随机生成的字符串、将精确的地理位置模糊化为一个大致范围,或者对数值型数据进行区间划分。这些操作的核心在于隐藏数据的直接可识别性,但不同方法的适用场景和效果差异显著。原创 2025-04-25 00:18:01 · 530 阅读 · 0 评论 -
如何识别金融欺诈行为并进行分析预警
金融欺诈是一个涵盖广泛、复杂多样的概念,它不仅仅是一种违法行为,更是对经济体系和个人信任的严重侵蚀。简单来说,金融欺诈是指通过欺骗、隐瞒或非法手段获取经济利益的行为,通常涉及资金、资产或信息的非法转移。这类行为往往以获取不当利益为目的,手段隐蔽且具有高度破坏性,不仅导致直接经济损失,还可能引发信任危机,动摇市场信心,甚至影响社会稳定。根据国际反欺诈组织(ACFE)的统计,全球每年因欺诈造成的经济损失高达数千亿美元,涉及从个人到企业、从地方到跨国的各个层面。原创 2025-04-24 00:17:44 · 625 阅读 · 0 评论 -
大数据面试高阶问题:同一业务的多个部门有不同指标口径,如何统一
指标定义的差异是口径不统一最直观的表现之一。表面上看,各个部门使用的指标名称可能相同,但背后所指的具体含义却大相径庭。以“用户增长率”这一指标为例,市场部门通常将其定义为“新增注册用户数与上期总用户数的比值”,目的是评估推广活动的效果。然而,运营部门可能更关注活跃用户的变化,将“用户增长率”定义为“本期活跃用户数与上期活跃用户数的比值”,以反映产品粘性和用户参与度。尽管两者的指标名称一致,但由于定义不同,得出的数据结果往往无法直接比较。这种定义上的分歧在日常工作中会带来显著的困扰。原创 2025-04-23 00:02:38 · 1402 阅读 · 0 评论 -
深度解析:在用户画像中,如何高效处理上亿级用户标签
用户画像,简单来说,是基于多维度数据构建的用户虚拟身份模型。它通过整合用户的静态信息、动态行为以及潜在需求,形成一个全面的“用户画像”,从而帮助企业理解用户是谁、需要什么以及可能做什么。这种模型并非单一的数据点,而是多层次、多维度的综合体,能够为业务决策提供深度洞察。用户画像通常由以下几个核心要素构成:基础信息:这是用户画像的静态部分,包括用户的年龄、性别、地理位置、职业等基本属性。这些信息通常来源于用户注册时的填写或第三方数据合作。原创 2025-04-15 00:05:50 · 1089 阅读 · 0 评论 -
如何通过CEP(复杂事件处理)识别异常交易行为? - 深度解析
在现代金融市场中,异常交易行为是一个复杂且多维的概念,其核心在于偏离正常市场行为的操作方式,通常以损害市场公平性、投资者利益或经济稳定为代价。这些行为不仅对市场参与者造成直接的经济损失,还可能引发信任危机,甚至诱发系统性风险。理解异常交易行为的定义、类型及其特征,是构建有效监控和预警机制的第一步。通过深入剖析这些行为的表现形式及其影响,我们可以为后续引入复杂事件处理(CEP)技术提供坚实的理论基础。原创 2025-04-17 00:18:23 · 1259 阅读 · 0 评论 -
物联网使用TDEngine进行Python脚本ETL的企业真实案例
3. 数据质量提升 :通过重采样和前向填充(ffill)技术,处理原始数据中可能存在的缺失值,提高数据的完整性和连续性。3. 结果验证 :可以作为实时计算结果的验证工具,通过比对离线计算和实时计算的结果,发现并修正实时计算中的潜在问题。1. 数据整合与聚合 :将分散在不同点号的功率数据进行整合,计算总功率,提供更全面的系统功率视图。2. 数据补全 :对于实时处理中可能丢失的数据点,通过离线批处理进行补全,确保数据的连续性。1. 高并发写入 :支持高并发的数据写入,适合处理大量设备同时上报的场景。原创 2025-04-17 08:44:42 · 421 阅读 · 0 评论 -
数据仓库分层存储设计:平衡存储成本与查询效率
一句话定义:数据仓库分层存储是根据数据的访问频率、时效性和业务价值,将数据分布在不同性能和成本的存储介质上,以优化查询效率并控制存储开支。想象一个巨大的图书馆:热门新书摆在显眼的前台,借阅频繁;过期的期刊被归档到地下室,偶尔有人翻阅;古老的手稿则锁在保险柜里,几乎无人问津。数据仓库的分层存储就像这个图书馆的管理员,决定哪些数据放在“前台”(高性能存储),哪些归到“地下室”(低成本存储)。核心目标是让常用数据触手可得,同时避免为冷门数据支付高昂的存储费用。为什么需要分层存储?性能驱动。原创 2025-04-14 00:17:37 · 925 阅读 · 0 评论 -
大数据 CDH 排除故障的步骤与技巧
CDH(Cloudera Distribution Hadoop)集群作为大数据处理的核心平台,在日常运维中,难免会遭遇各种 “拦路虎”。这些故障大致可归为几类,了解它们的特点是解决问题的第一步。启动失败:这是令人头疼的问题之一。集群中的某个组件,如 HDFS 的 NameNode 或 YARN 的 ResourceManager 无法启动。原因通常隐藏在配置文件中,可能是参数错误,也可能是资源不足,如内存分配不足或端口被占用。原创 2025-04-09 01:58:38 · 755 阅读 · 0 评论 -
TDengine 从入门到精通(2万字长文)
更令人惊喜的是,它还针对时序数据特别增加了一些实用功能,例如插值、降采样、时间加权平均(TWA)等操作,这些在传统 SQL 中难以直接实现的功能,在 TDengine 中只需通过简单的 SQL 语句就能轻松搞定,无需你再花费大量时间和精力编写一堆复杂的代码来处理,大大提高了工作效率。尤其是在设备众多、数据繁杂的场景中,超级表的优势更加明显,能够实现对数据的高效处理,如同进行一场降维打击,轻松应对复杂的数据管理与分析需求。超级表创建,代表具体的一台设备,它携带了特定的设备 ID 和区域信息。原创 2025-04-07 00:01:22 · 1359 阅读 · 0 评论 -
Flink 自定义数据源:从理论到实践的全方位指南
在 Flink 的世界里,数据源是数据流的 “源头活水”。简单来说,它负责从外部系统(比如数据库、消息队列、文件系统等)读取数据,并将其转化为 Flink 内部能够处理的格式,供后续的算子(Operator)加工。不管是实时流处理的无界数据,还是批处理的有限数据集,数据源都是那个默默干活的 “搬运工”。Flink 的数据源设计非常灵活,它通过一套精心设计的组件架构,确保既能支持内置的开箱即用功能,又能让开发者自由定制。分片(Splits):数据的逻辑切片。原创 2025-03-25 00:01:37 · 1123 阅读 · 0 评论 -
数据分析工作流程全解析:从混沌到洞察的旅程
数据分析,听起来像是技术活,但本质上更像是一门艺术——从一堆杂乱无章的数字、文本和记录中,挖掘出可以指导行动的洞察。它不是简单地盯着表格发呆,而是通过工具、技术和流程,把原始数据变成能解决实际问题的“金子”。让数据说话,帮人做决策。分类的魔法:通过研究已有的分类数据,摸索出规律,然后用这些规律去预测未知。比如,电商平台根据用户的历史购买记录,判断哪些人可能是“剁手党”。关联与推荐:在大规模数据里找出事物之间的联系,比如“买了面包的人通常也会买牛奶”,这背后是关联规则的功劳,也是推荐系统的核心逻辑。原创 2025-03-21 08:52:30 · 585 阅读 · 0 评论 -
大数据 ETL 异常值缺失值处理完整方案
异常值,通常指在统计分布上远离大部分数据点的个体,这些数据可能由于录入错误、设备故障、传输异常或真实的极端事件所引发。了解异常值的本质和成因,有助于我们选择恰当的处理策略。原创 2025-03-19 11:57:20 · 1506 阅读 · 0 评论 -
Spark DataFrame、Dataset 和 SQL 解析原理深入解析(万字长文多张原理图)
Spark 是一个分布式计算框架,其架构设计旨在实现高效的并行处理和容错能力。核心计算引擎(Core Engine):核心计算引擎负责任务调度、内存管理以及容错机制。它通过 Driver 和 Executor 的协作完成分布式计算,其中 Driver 负责作业的协调和调度,Executor 负责具体任务的执行。相关源码可以参考类,它是 Spark 核心计算引擎的入口类。// 简化示意,创建 SparkContext 实例弹性分布式数据集(RDD)原创 2025-03-17 11:06:52 · 794 阅读 · 0 评论 -
深度剖析 Doris 数据倾斜,优化方案一网打尽
简单来说,数据倾斜指的是数据在分区或分桶时分布不均匀的现象。想象一下,你把一堆苹果分给几个篮子,结果有的篮子装得满满当当,有的却几乎是空的 —— 这就是数据倾斜在 Doris 中的写照。在分布式系统中,这种不均匀分布会直接影响到数据的存储、查询和计算效率。分区层面:数据按时间、地域等维度切分时,某些分区可能承载了绝大部分数据。分桶层面:数据按哈希值分配到不同桶中时,某些桶可能因为键值分布不均而 “超载”。原创 2025-03-14 00:02:08 · 1163 阅读 · 0 评论 -
Hbase高阶知识:HBase的协处理器(Coprocessor)原理、使用实例、高级技巧和案例分析
HBase,作为一个开源的、分布式的、可扩展的以及基于列的NoSQL数据库,已被广泛应用于存储大规模数据集。其架构设计和数据模型是理解HBase工作原理和性能特点的基础。HBase的架构由多个关键组件构成,包括Client、Zookeeper、Master和RegionServer等。其中,Client负责与用户进行交互,接收用户的请求并返回结果;Zookeeper则负责协调和管理HBase集群中的各个组件,确保系统的高可用性;原创 2024-09-28 00:00:47 · 1111 阅读 · 0 评论 -
指标异动拆解:数据分析师的实战指南
在数据分析的世界里,指标异动指的是业务指标出现长期、持续性且偏离常规走势的变化。这不仅仅是数字上的起伏,更像是业务发出的“信号”,提醒我们某些地方可能出了问题,或者隐藏着未被发现的机会。比如,电商平台的销售额突然暴跌,或者某个APP的日活用户数意外飙升,这些都可能是指标异动的表现。但要注意,异动和普通波动可不是一回事。真正的异动往往需要我们跳出数据的表面,去探究背后的业务含义。这就要求分析师不仅要对数字敏感,更得对业务有深刻的理解。只有这样,才能在茫茫数据海中抓住那些值得深挖的“异常信号”。原创 2025-02-27 00:13:28 · 1118 阅读 · 0 评论