
AI+量化交易-程序化交易从小白到专家
文章平均质量分 92
大多程序员难逃35+、40+失业,对已经入坑炒股的程序员,炒股也未来养家糊口有希望一条路。但是主观交易难克服人性弱点,要花费比较多时间做分析和盯盘,程序员可以发挥自己的专长做量化交易,特别是程序化交易。
炒股10多年,一直想搞量化交易但进步比较慢,有了大模型之后,突然如虎添翼。
大模型大数据攻城狮
在阿里巴巴等多种类型公司工作过,第一份工作是在大厂做移动开发,后来在创业公司由于团队需要做后台开发、嵌入式开发等几乎全栈开发,最近这些年还保持必要全栈开发,精力更多在大数据、大模型等领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python 数据结构完全教程:从新手到大神的进阶之路
内置数据结构很强大,但有时你需要量身定制的数据结构来解决特定问题。比如,优先级队列需要动态更新优先级,普通堆做不到;或者你需要一个支持快速查找和删除的链表。自定义数据结构让你从“用工具”升级到“造工具”!原创 2025-07-27 06:55:32 · 563 阅读 · 0 评论 -
Python Pandas 理论与实例应用完全解析教程
Pandas 的内置方法已经非常强大,但有时候你需要自定义逻辑来处理特殊需求。Pandas 提供了 apply、map 和 agg 等方法,让你能灵活地应用自定义函数。agg 可以结合 groupby 使用,应用自定义聚合函数。实例:计算每个产品的总收入和最大销量})Product如果自定义函数较复杂,建议先用小数据集测试,以确保逻辑正确。创建一个 DataFrame,包含学生姓名和分数,用 apply 计算是否及格(分数 >= 60)。原创 2025-07-15 06:55:44 · 460 阅读 · 0 评论 -
Python数据分析入门知识基础和案例(万字长文)
在当今数字化时代,。数据分析通过对海量复杂数据进行系统性解读,为企业决策提供科学依据,在提升运营效率、优化产品服务、开拓新市场等方面发挥着不可替代的作用。Python凭借其丰富的数据处理库(如NumPy、Pandas)和强大的可视化工具(如Matplotlib、Seaborn),已成为数据科学家和分析师的首选工具之一。:高效处理缺失值、重复值和异常值:直观呈现数据特征和潜在规律:利用scikit-learn等库进行高级数据分析和预测建模。原创 2024-11-01 21:59:56 · 868 阅读 · 0 评论 -
Python文件相关操作详解
说到文件,大家可能直观上会想到电脑里的文档、图片或者视频。其实从编程的角度来看,文件就是存储在磁盘上的一段数据,它可以是文本,也可以是二进制格式的。文件的作用就是持久化存储信息,方便程序读取或写入数据。比如你在写一个程序,需要保存用户的设置信息,或者读取一个大数据集进行分析,这时候文件就派上用场了。在 Python 中,文件操作主要依赖标准库里的 open() 函数,它是咱们和文件打交道的大门。通过这个函数,你可以打开一个文件,读取它的内容,或者往里面写入新的数据。原创 2025-06-06 00:02:32 · 513 阅读 · 0 评论 -
Python如何在高并发场景中合理使用协程(async/await)
协程作为Python高并发编程的重要工具,凭借其轻量级和高效的特点,为I/O密集型任务提供了理想的解决方案。通过`async/await`语法,开发者能够以简洁的方式编写异步代码,而事件循环则在背后默默协调任务的执行。无论是简单的脚本还是复杂的Web应用,掌握协程的基本原理和用法,都能显著提升程序的性能和可维护性。对于初学者而言,建议从小型项目入手,例如编写一个异步爬虫或简单的API客户端,逐步熟悉`async/await`的用法和事件循环的调度机制。原创 2025-04-25 00:19:24 · 710 阅读 · 0 评论 -
开发量化交易与程序化交易,你需要掌握的 Python 技能全集
_init__用来初始化指标next()是每个bar运行一次的策略主逻辑代表当前bar的收盘价我们先构造一个简单的选股逻辑:低市盈率(PE)高ROE最近30日涨幅最小pro = ts.pro_api("你的token")# 获取沪深A股列表# 拉取PE和ROE(用最新财报)# 合并因子# 排序逻辑:低PE + 高ROE + 低涨幅当然,实际你可能会用 z-score 归一化各因子并打分,这里为了清晰用最直接方式。原创 2025-06-25 00:05:32 · 592 阅读 · 0 评论 -
用 asyncio 和 signal 解锁量化交易系统的隐秘力量
策略作者可以只管写策略,不用改主控代码。原创 2025-06-26 00:11:07 · 832 阅读 · 0 评论