2021 Anomaly Detection (李宏毅

本文探讨了异常检测在深度学习中的应用,包括使用分类器进行异常检测,特别是利用预训练的分类器通过估计信心分数来识别异常情况。文章讨论了训练集、开发集和测试集的区别,并提出了在没有标签的情况下进行异常检测的方法,如开放集识别。此外,通过Twitch Plays Pokémon的例子展示了无标签异常检测问题的建模和解决策略,包括使用生成模型如Auto-encoder进行异常检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021 - Anomaly Detection (1_7)_哔哩哔哩_bilibili

異常偵測就是、我們要讓機器可以知道、我不知道這件事情

 那在這門課裡面呢、我們通常用上標、來表示一個完整的東西、用下标,來表示一個完整東西的其中一個部份,

novelty这个词汇,  顯然是要找一個新的東西,比较正面的意思

什麼叫做像訓練資料呢、这就是Anomaly Detection里需要探讨的问题。不同的方法,它就用不同的方式來定義similar,

这里强调一下,這個所謂的異常、我們到底要檢測出什麼東西、其實是取決於你提供給機器什么样的训练资料,

 

 那可能正常的交易它的金額都比較小、頻率都比較低、那如果今天在短時間內連續非常高額的消費、他可能就是一個異常的行為、

你的訓練資料就是正常的細胞、正常細胞它長什麼樣子、它的細胞核的大小、它的分裂的頻率等等、

why not 二元分类?

  1. 反正不是寶可夢的東西太多了、无法穷举所有可能不是寶可夢的东西,你根本沒有辦法知道你整個class 2整個異常的資料的分佈,异常资料无法视为一个类别,因为它的变化太大了,
  2. 异常data难收集,

Anomaly Detection是一個獨立的研究主題、是一個仍然尚待研究的問題、

异常检测问题大致分成两类,

一类是有label的,

有label你就可以拿來訓練一個classifier、教機器說 看到這些x、能不能够预测出它對應的ŷ是什麼

怎么訓練一個classifier?我們上課有講過說 用generative model來做classification、也說過用logistic regression來做classification、还讲过用deep learning來做classification,就可以選一個你喜歡的技術,来訓練一個classifier,

但是在這邊的label裡面,並沒有任何一種label叫做unknown,

那如果 这个Classifier训练好后,如果看到训练数据中不存在的数据,那么可以为其打上【unknown】的标签。open-set recognition

那如果你是說 你有一個classifier,你希望這個classifier具有、看到不知道的東西 它會標上unknown的能力,那這個問題 它是異常偵測其中一種,又叫做open-set recognition

就是说,在做辨识的时候,你的model是open的、它可以辨識它沒有看過的東西、沒有看過的東西 它就貼上一個標籤說、这是没有看过的

另一类是有unlabel的,

又分为两类,clean和polluted,更多的時候 我們遇到的狀況是,我们手上的训练资料没有办法保证完全clean,可能有非常少量的訓練資料 比如說1%的、0.1%的訓練資料 它其實仍然是異常的

Case1:with classifier

判断卡通人物是否来自辛普森家庭

现在有数据及标签:

然后要训练分类器:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值