空间滤波之均值滤波

6.1前言

硬件开发中需要复习一些相关原理,简单叙述一下。相关计算无论书籍,网络上的文章或者国内外视频网站上的视频多有描述,均可参考。

均值滤波有让图像更加平滑的作用,本文主要关注其对噪声的去除作用。

6.2原理

均值滤波是线性空间滤波的一种最简单的计算形式。

有些重要概念需要先理解一下。最重要的是相关(correlation)和卷积(convolution)。

先说相关。空间滤波的过程需要对每个像素一次处理,针对每个像素的计算需要考虑其周边像素的值。本质上来讲,如果对部分或者全部的像素进行滤波,就是根据其周边的像素值计算该像素值。比如我们要对一颗像素P进行均值滤波,该像素位于坐标x,y上。那像素P周围的像素值就是计算P数值的重要参数。

x-1,y-1

x,y-1

x+1,y-1

x-1,y

P(x,y)

x+1,y

x-1,y+1

x,y+1

x+1,y+1

作为最简单的一种滤波方式,均值滤波的思想是将其周围的像素逐个除以参与计算像素的个数,其相加的值就是像素P的值。以像素P为例,像素P原值和和周边像素共有9个像素,则每个像素均乘以九分之一累加得到一个新像素值。

这个计算过程可以用下面公式来形容。

简单解释一下。

w(x,y)是个函数,输入一个像素坐标,返回一个计算因数。以均值滤波的来讲,无论坐标在哪里,返回的计算因数都是九分之一。一般这部分称为核(kernel),或者模版。

f(x,y)同样是个函数,输入坐标,返回坐标位于x,y的像素值。以上面的例子来讲,就是像素P或者是其周围的一圈像素值。

公式表达的就是计算过程将每一对s和t产生的坐标取出的计算因数和像素值相乘然后累加。这个过程我们称为相关。

卷积于此计算过程相同,不同的是计算前需要先将模板倒转180度。

比如对于一个3x3的模板,其位置和计算因数的关系是:

那倒转后为:

对于均值滤波,就是用相关或者卷积的方式得到一个新的像素值。

所以对于卷积,其计算可以用下列公式来描述。

网络上常见一个动图,对像素的逐个计算过程描述的非常清晰:

6.3软件实现

我们用Lenna的照片做例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值