在 Salesforce 架构设计中,针对 “通过不同优惠价推动市场份额” 的需求,需从业务逻辑、数据模型、流程自动化、集成扩展等多维度综合设计,确保灵活性、可扩展性和数据一致性。以下是具体架构设计方案:
一、核心业务目标拆解
首先明确优惠价的核心作用:通过差异化定价策略(如新客户折扣、批量采购优惠、区域补贴、限时活动等)吸引目标客户群体,提升转化率和复购率,最终扩大市场份额。需支持的关键场景包括:
- 多维度优惠规则(客户分层、产品类别、订单量、时间周期等);
- 优惠活动的快速配置与调整;
- 优惠执行的自动化与合规性;
- 优惠效果的追踪与分析。
二、数据模型设计
基于 Salesforce 标准对象扩展,构建支持优惠管理的核心数据模型,确保数据关联清晰、可复用。
1. 核心对象设计
对象名称 |
作用说明 |
关键字段示例 |
优惠方案(Promotion) |
存储优惠活动的基本信息(如 “新客户首单 8 折”“批量采购满 1000 件减 5%”) |
优惠名称、类型(折扣 / 满减 / 赠品)、适用产品(多选项)、适用客户群、生效时间、规则表达式 |
客户分层(Customer Tier) |
基于客户属性(如行业、规模、历史消费额)定义分层(如 VIP、新客户、流失客户) |
分层名称、划分规则(如 “近 1 年消费≥10 万为 VIP”)、对应优惠方案( lookup 关联) |
产品价格层级(Product Price Tier) |
针对同一产品的多阶梯价格(如采购 1-10 件单价 100 元,11-50 件单价 90 元) |
关联产品、数量下限、数量上限、单价、适用优惠方案 |
订单优惠记录(Order Discount Log) |
记录订单中应用的优惠明细,用于追溯和分析 |
关联订单、优惠方案、优惠金额、触发条件(如 “满足批量采购条件”) |
2. 关系设计
- 优惠方案(Promotion)与产品(Product):多对多关系(通过 junction 对象关联,支持 “某优惠适用于多个产品”);
- 优惠方案与客户分层(Customer Tier):多对多关系(支持 “某分层客户可享受多个优惠”);
- 订单(Order)与优惠方案:多对多关系(通过订单优惠记录关联,支持 “一个订单应用多个优惠”)。
三、优惠规则的自动化执行
通过 Salesforce 工具实现优惠规则的自动判断和应用,减少人工干预。
1. 规则配置层
- 使用 公式字段 和 流构建器(Flow Builder) 定义基础规则:
例:在订单对象中创建公式字段 “是否满足批量优惠”,规则为 “订单产品数量≥10 → 是”;
- 复杂规则(如 “新客户 + 特定行业 + 首单满 5000 元可享 8 折 + 赠品”)使用 Apex 触发器 实现:
触发器在订单保存前触发,调用 “优惠规则引擎” 类,校验订单属性(客户分层、产品、金额)是否匹配优惠方案,计算优惠金额并写入订单。
2. 执行流程
- 客户下单时,系统自动读取客户分层(基于客户历史数据和分层规则);
- 校验订单产品、数量、金额是否匹配适用的优惠方案(如 “新客户 + 产品 A + 数量≥5 件 → 触发 9 折优惠”);
- 若满足多个优惠规则,通过 优先级设置 确定执行顺序(如 “满减优惠优先于折扣优惠”);
- 自动计算优惠后金额,更新订单总价,并在 “订单优惠记录” 中生成明细;
- 若优惠规则未满足(如 “优惠已过期”),通过 闪电组件(Lightning Component) 在前端提示用户(如 “当前订单不满足任何优惠,是否手动申请?”)。
四、灵活性与扩展性设计
为快速响应市场变化(如临时推出节日优惠、调整客户分层规则),架构需支持以下能力:
1. 无代码配置优惠
- 通过 自定义元数据类型(Custom Metadata Type) 存储优惠规则模板,业务人员可通过界面配置新优惠(无需开发);
- 例:创建 “限时折扣模板”,业务人员只需填写 “折扣率、生效日期、适用产品”,系统自动生成优惠方案。
2. 集成外部系统
- 若客户数据或交易数据在外部系统(如 ERP、电商平台),通过 Salesforce Connect 或 API 集成 实时同步数据,确保优惠规则基于最新信息判断;
- 例:从 ERP 同步客户历史采购量,用于更新客户分层,确保 VIP 客户优惠准确生效。
3. 多渠道适配
- 针对线下销售(Sales Cloud)、电商平台(Commerce Cloud)、合作伙伴(Partner Community)等渠道,通过 共享规则(Sharing Rule) 控制优惠可见性(如合作伙伴仅能看到其代理产品的优惠);
- 在 Commerce Cloud 中,通过 Storefront Reference Architecture(SFRA) 实现前端价格实时计算(如客户在购物车中添加商品后,自动显示适用优惠)。
五、监控与分析体系
通过数据可视化和报表,追踪优惠活动对市场份额的影响,指导策略优化。
1. 核心报表与仪表盘
- 优惠效果分析:按优惠方案统计 “带来的新增订单量、销售额、客户转化率”;
- 客户分层效果:对比不同分层客户的优惠使用率、复购率(如 “VIP 客户优惠使用率 30%,新客户 50%”);
- 产品优惠关联:分析哪些产品通过优惠实现了市场份额增长(如 “产品 B 在满减优惠后销量提升 20%”)。
2. 数据预警
- 使用 Einstein Analytics 设置异常预警:如 “某优惠成本超出预期 30%”“新客户优惠转化率低于 10%”,自动推送通知给市场团队。
六、合规与风险控制
- 权限控制:通过 ** profiles 和 permission sets** 限制优惠配置权限(如仅市场经理可创建限时优惠);
- 审计追踪:启用 字段历史追踪,记录优惠规则的修改记录(如 “2023-10-01 张三将折扣率从 8 折改为 7 折”);
- 预算控制:在优惠方案中添加 “最大优惠金额上限” 字段,通过流程构建器限制超预算优惠的创建。
总结
该架构通过 “灵活的数据模型 + 自动化规则引擎 + 多渠道适配 + 数据分析”,实现了优惠策略的快速落地和效果追踪。核心优势在于:
- 业务人员可自主配置优惠,响应市场变化;
- 基于客户和产品的多维度分层,确保优惠精准触达目标群体;
- 全流程自动化减少人工错误,提升客户体验;
- 数据驱动的分析能力,持续优化优惠策略以扩大市场份额。
实际应用中,可结合公司具体业务场景(如 B2B vs B2C)进一步细化,例如 B2B 侧重批量采购优惠,B2C 侧重新客首单折扣和限时活动。