买卖股票的最佳时机含冷冻期(medium)
给定一个整数数组prices
,其中第 prices[i]
表示第 i
天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即进入冷冻期,为期 1 天)。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
提示:
1 <= prices.length <= 5000
0 <= prices[i] <= 1000
解题思路
这道题也涉及到多种状态,并且它们关系之间其实比较复杂,我们需要用到所谓的“状态机”帮我们理清一下思路,不过首先我们要先进行状态表示,如下图所示:
接下来我们利用 “状态机”,画出它们之间的关系,简单地说就是谁能到谁,谁不能到谁。然后根据这些状态,获得对应的状态转移方程:
其实取最大值是因为题目要求的是最大利润,那么肯定是取最大值!此外,由 i-1 到 i 的时候自己推导自己,虽说啥也不干,但是可能不干时候的利润比干完还大,所以也要进行比较!
接下来就是初始化问题,因为用到 i-1 处,为了方便这里就不开虚拟位置了,直接就初始化下标为 0 处即可。那么如何初始化呢❓❓❓
- 对于
dp[0][0]
来说,表示此刻买入了该处的股票,那么此时利润肯定是负数,也就是dp[0][0] = -price[0]
。 - 对于
dp[0][1]
来说,表示此刻是可交易状态,那么此刻是没有买入股票的,也因为是第一个位置,所以利润为 0,也就是dp[0][1] = 0
。 - 对于
dp[0][2]
来说,表示此刻是冷冻期状态,很明显,利润为 0,也就是dp[0][2] = 0
。
然后就是填表顺序,从上往下(按照我们状态表示来,这不是固定的),一次性填三个表。
最后就是返回值,我们直接返回最后一行中三个状态的最大值也就是最大利润即可,但更仔细一点会发现,其实我们返回“可交易”和“冷冻期”状态的最大值就行了,因为想一下就知道,此时“买入”状态的话,利润是减少的(花钱买股票当然是减少),所以根本不需要和它们去比,但是如果没有想这么多,直接返回它们三个的最大值也是可以的!
class Solution {
public:
int maxProfit(vector<int>& prices) {
// 创建dp表,这里用n行3列,每列代表一个状态
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(3, 0));
// 初始化,因为上面创建dp的时候已经初始化为0
// 所以只需要初始化“买入”状态即可
dp[0][0] = -prices[0];
// 填表
for(int i = 1; i < n; ++i)
{
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
dp[i][2] = dp[i - 1][0] + prices[i];
}
// 返回值
return max(dp[n - 1][1], dp[n - 1][2]);
}
};
8、买卖股票的最佳时期含手续费(medium)
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意: 这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
解题思路
一开始这道题我想的太复杂了,在想状态机的时候觉得有三个状态来表示,分别是 “买入”、“卖出”、“什么也不做”,但是在画状态机的时候发现其实这样子画出来的状态很冗余而且比较乱,其实主要原因是以为我们觉得 “买入” 和 “卖出” 这两个状态表示起来不是很明确,所以我建议将其改成 “持有股票” 和 “不持有股票”,对于上一道题同样如此,这样子理解对这道题的状态会更加清晰!
下面以图片形式给出状态表示和状态转移方程的解析:
对于初始化,因为状态转移方程需要用到 i-1 位置处,所以我们 需要初始化一下下标为 0 处防止越界,因为我们有两个状态,所以下面来讨论一下它们两个对应的初始化问题:
- 对于 ”持有股票“ 状态,也就是
dp[0][0]
,因为它表示当前持有股票,很明显由于是第一次出发,所以它要拿到当前位置的股票,所以就要减去当前位置的股票,也就是dp[0][0] = -prices[i]
- 对于 ”不持有股票“ 状态,也就是
dp[0][1]
,很明显,就让它表示啥也不干,也不持有股票,所以就是dp[0][1] = 0
对于填表顺序,很明显就是从左往右,一次填两个表。
对于返回值,其实我们可以返回这两个状态的最大值那个,但是因为最后 ”持有股票“ 状态没卖出去股票,所以其实按道理来说当前的利润是要比 ”不持有股票“,相当于卖出了股票后的利润要小的,所以 直接返回 dp[n-1][1]
即可!
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
// 创建dp表
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2, 0));
// 初始化
dp[0][0] = -prices[0];
// 填表
for(int i = 1; i < n; ++i)
{
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
// 返回值
return dp[n - 1][1];
}
};