【动态规划:简单多状态dp问题】买卖股票的最佳时机含冷冻期 && 买卖股票的最佳时期含手续费

在这里插入图片描述

买卖股票的最佳时机含冷冻期(medium)

309. 最佳买卖股票时机含冷冻期

给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即进入冷冻期,为期 1 天)。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

输入: prices = [1]
输出: 0

提示:

  • 1 <= prices.length <= 5000
  • 0 <= prices[i] <= 1000

解题思路

​ 这道题也涉及到多种状态,并且它们关系之间其实比较复杂,我们需要用到所谓的“状态机”帮我们理清一下思路,不过首先我们要先进行状态表示,如下图所示:在这里插入图片描述

​ 接下来我们利用 “状态机”,画出它们之间的关系,简单地说就是谁能到谁,谁不能到谁。然后根据这些状态,获得对应的状态转移方程:

在这里插入图片描述

​ 其实取最大值是因为题目要求的是最大利润,那么肯定是取最大值!此外,由 i-1i 的时候自己推导自己,虽说啥也不干,但是可能不干时候的利润比干完还大,所以也要进行比较!

​ 接下来就是初始化问题,因为用到 i-1 处,为了方便这里就不开虚拟位置了,直接就初始化下标为 0 处即可。那么如何初始化呢❓❓❓

  • 对于 dp[0][0] 来说,表示此刻买入了该处的股票,那么此时利润肯定是负数,也就是 dp[0][0] = -price[0]
  • 对于 dp[0][1] 来说,表示此刻是可交易状态,那么此刻是没有买入股票的,也因为是第一个位置,所以利润为 0,也就是 dp[0][1] = 0
  • 对于 dp[0][2] 来说,表示此刻是冷冻期状态,很明显,利润为 0,也就是 dp[0][2] = 0

​ 然后就是填表顺序,从上往下(按照我们状态表示来,这不是固定的),一次性填三个表。

​ 最后就是返回值,我们直接返回最后一行中三个状态的最大值也就是最大利润即可,但更仔细一点会发现,其实我们返回“可交易”和“冷冻期”状态的最大值就行了,因为想一下就知道,此时“买入”状态的话,利润是减少的(花钱买股票当然是减少),所以根本不需要和它们去比,但是如果没有想这么多,直接返回它们三个的最大值也是可以的!

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // 创建dp表,这里用n行3列,每列代表一个状态
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(3, 0));

        // 初始化,因为上面创建dp的时候已经初始化为0
        // 所以只需要初始化“买入”状态即可
        dp[0][0] = -prices[0];

        // 填表
        for(int i = 1; i < n; ++i)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
            dp[i][2] = dp[i - 1][0] + prices[i];
        }

        // 返回值
        return max(dp[n - 1][1], dp[n - 1][2]);
    }
};

在这里插入图片描述

8、买卖股票的最佳时期含手续费(medium)

714. 买卖股票的最佳时机含手续费

​ 给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

​ 你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

​ 返回获得利润的最大值。

注意: 这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

解题思路

​ 一开始这道题我想的太复杂了,在想状态机的时候觉得有三个状态来表示,分别是 “买入”、“卖出”、“什么也不做”,但是在画状态机的时候发现其实这样子画出来的状态很冗余而且比较乱,其实主要原因是以为我们觉得 “买入” 和 “卖出” 这两个状态表示起来不是很明确,所以我建议将其改成 “持有股票”“不持有股票”,对于上一道题同样如此,这样子理解对这道题的状态会更加清晰!

​ 下面以图片形式给出状态表示和状态转移方程的解析:

在这里插入图片描述

​ 对于初始化,因为状态转移方程需要用到 i-1 位置处,所以我们 需要初始化一下下标为 0 处防止越界,因为我们有两个状态,所以下面来讨论一下它们两个对应的初始化问题:

  • 对于 ”持有股票“ 状态,也就是 dp[0][0],因为它表示当前持有股票,很明显由于是第一次出发,所以它要拿到当前位置的股票,所以就要减去当前位置的股票,也就是 dp[0][0] = -prices[i]
  • 对于 ”不持有股票“ 状态,也就是 dp[0][1],很明显,就让它表示啥也不干,也不持有股票,所以就是 dp[0][1] = 0

​ 对于填表顺序,很明显就是从左往右,一次填两个表。

​ 对于返回值,其实我们可以返回这两个状态的最大值那个,但是因为最后 ”持有股票“ 状态没卖出去股票,所以其实按道理来说当前的利润是要比 ”不持有股票“,相当于卖出了股票后的利润要小的,所以 直接返回 dp[n-1][1] 即可

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        // 创建dp表
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));

        // 初始化
        dp[0][0] = -prices[0];

        // 填表
        for(int i = 1; i < n; ++i)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        
        // 返回值
        return dp[n - 1][1];
    }
};

在这里插入图片描述

<think>好的,我需要帮助用户理解冷冻股票买卖最佳时机动态规划算法,并给出Python实现。首先,我得回顾一下用户提供的引用资料,特别是引用[5]中的代码和思路。用户的问题是关于动态规划解决这个问题的具体步骤和代码实现。 首先,这个问题的主要约束是卖出股票后有一天冷冻,不能立即买入。动态规划通常适用于这类问题,因为它可以分解问题到每天的状态,并记录每个状态下的最大收益。根据引用[5],状态被分为四种:保持买入状态、保持卖出状态、当天卖出、冷冻。我需要理清每个状态之间的转移关系。 保持买入状态(状态0):可能是前一天已经是买入状态,或者当天买入。而当天买入又可能来自前一天的冷冻或保持卖出状态。这里需要注意,买入时必须是前一天没有卖出操作,即不在冷冻。 保持卖出状态(状态1):可能是前一天已经是卖出状态,或者前一天是冷冻。这表示当天没有进行任何操作,处于可买入但未买入的状态。 当天卖出(状态2):这只能在当天卖出,所以前一天的必须处于买入状态,卖出后进入冷冻冷冻(状态3):只能在前一天卖出后进入,所以当天的状态由前一天的卖出状态转移而来。 接下来,初始化部分,第一天只能买入或者不操作,所以状态0的初始值为-prices[0],其他状态因为没有卖出,收益为0。 然后,遍历每一天的价格,根据状态转移方程更新每个状态的最大收益。最后,取最后一天所有状态的最大值,因为最终可能处于卖出或冷冻状态。 需要检查代码中的转移方程是否正确,比如状态0的转移是否考虑了所有可能的前驱状态。例如,在状态0的更新中,是否允许从冷冻(状态3)或保持卖出(状态1)后买入?是的,因为冷冻之后的下一天可以买入,而保持卖出状态时也可以随时买入,只要没有卖出操作在前一天。 用户可能需要更详细的解释,比如每个状态的定义和转移逻辑,以及为什么这样设计状态。此外,代码中的初始化是否正确,循环中的处理是否覆盖了所有情况。 最后,需要确保给出的Python代码正确无误,并且与引用[5]中的代码一致,同时解释清楚每一步的作用。可能还需要讨论时间复杂度和空间复杂度,以及优化方法,比如状态压缩,减少空间使用。</think>### 买卖股票最佳时机冷冻动态规划解析 #### 问题核心 在股票交易中,卖出后需等待一天冷冻才能再次买入,需通过动态规划合理规划买卖操作以实现最大收益。 --- ### 一、动态规划状态定义 定义四个状态描述每日可能的交易状态: 1. **状态0**:保持买入状态(当日持有股票) 2. **状态1**:保持卖出状态(当日未持有股票,且未处于冷冻) 3. **状态2**:当日卖出股票 4. **状态3**:处于冷冻(仅持续一天) --- ### 二、状态转移方程 1. **状态0**:$dp[i][0] = \max(dp[i-1][0], \max(dp[i-1][1] - p, dp[i-1][3] - p))$ - 延续前一天的买入状态,或从非冷冻(状态1/3)买入 2. **状态1**:$dp[i][1] = \max(dp[i-1][1], dp[i-1][3])$ - 延续前一天的卖出状态,或前一天是冷冻 3. **状态2**:$dp[i][2] = dp[i-1][0] + p$ - 必须在前一天持有股票时卖出 4. **状态3**:$dp[i][3] = dp[i-1][2]$ - 仅在前一天卖出后进入冷冻 --- ### 三、Python代码实现 ```python def maxProfit(prices): n = len(prices) if n == 0: return 0 dp = [[0] * 4 for _ in range(n)] dp[0][0] = -prices[0] # 初始买入状态 for i in range(1, n): # 状态0: 保持买入或当天买入(需从前一天的卖出/冷冻转移) dp[i][0] = max(dp[i-1][0], max(dp[i-1][1] - prices[i], dp[i-1][3] - prices[i])) # 状态1: 保持卖出或从冷冻转移 dp[i][1] = max(dp[i-1][1], dp[i-1][3]) # 状态2: 当天卖出(必须前一天持有) dp[i][2] = dp[i-1][0] + prices[i] # 状态3: 冷冻(前一天卖出) dp[i][3] = dp[i-1][2] return max(dp[-1]) # 最终取所有状态的最大值 ``` --- ### 四、算法分析 1. **时间复杂度**:$O(n)$,遍历一次价格数组 2. **空间复杂度**:$O(n)$,可优化为$O(1)$(用变量代替二维数组)[^5] 3. **关键点**:明确状态转移关系,冷冻仅影响买入操作的时机[^1][^2] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

利刃大大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值