- 博客(74)
- 收藏
- 关注
原创 利用Tongyi Qwen实现自然语言任务的创新应用
Tongyi Qwen是阿里巴巴达摩院开发的大型语言模型。它不仅能够理解用户意图,还可以通过语义分析来处理不同领域和任务的需求。这使得它在多种应用场景中都能表现出色,例如信息检索、自动客服、内容生成等。
2025-06-20 16:13:08
66
原创 在LangChain中集成Solar LLM的新方法
LangChain是一个帮助构建语言模型应用的框架,它提供了各种集成和工具来简化大语言模型(LLM)的使用。在以前的版本中,Solar LLM可以通过直接调用来使用。但现在建议通过ChatUpstage进行集成,以确保最新功能的使用。
2025-06-20 16:09:59
145
原创 使用LangChain与Ollama模型进行多模态交互
在这个代码示例中,首先将目标图像转换为Base64编码格式,然后将其作为上下文绑定到Ollama模型。接着,询问模型关于该图像的具体问题,模型结合图像和用户问题生成响应。
2025-06-20 16:03:14
123
原创 使用IBM watsonx.ai进行AI模型推理的实战指南
IBM watsonx.ai是IBM的一项AI技术服务,它允许开发人员访问和使用公司的基础模型进行推理。WatsonxLLM是一个包装器,用于与这些基础模型进行交流,它简化了调用和处理模型的过程。通过结合LangChain库,开发者可以轻松构建自然语言处理应用。
2025-06-20 15:53:46
103
原创 使用Langchain与CerebriumAI进行LLM模型调用
CerebriumAI是一项基于云的服务,提供了一小时的免费serverless GPU计算测试不同模型。这为开发者提供了实验和创新的机会。Langchain是一个强大的框架,用于构建LLM驱动的应用,简化模型的调用流程。
2025-06-20 15:44:01
66
原创 探索ChatYi模型的应用与集成
ChatYi是由01.AI推出的高级AI助手模型,具备自然语言处理能力,适用于多种领域,如技术趋势分析和多语言翻译。要使用ChatYi,需要先注册一个01.AI账号并获取API密钥。
2025-06-20 15:36:53
147
原创 如何使用 vLLM 模拟 OpenAI API 进行聊天应用开发
vLLM 可以通过包无缝集成到您的应用中。此包提供了一种简明高效的方式,利用 LangChain 库调用 vLLM 模型。部署后,您可以使用与 OpenAI API 相同的格式查询服务器。
2025-06-20 15:33:35
200
原创 OllamaFunctions工具调用实验指南
OllamaFunctions旨在为模型增加工具调用支持,使得复杂的方案和多功能应用更为容易。尽管更强大和更具能力的模型会在复杂模式下表现更佳,我们仍可以通过这个封装器和phi3等模型进行实验。
2025-06-20 15:28:22
203
原创 使用Langchain与LiteLLM库实现轻松调用主流LLM服务
随着大语言模型(如GPT-3.5、GPT-4等)的广泛应用,如何高效地集成和调用这些模型成为开发者面临的一大挑战。LiteLLM通过对不同厂商API的统一封装,降低了集成复杂度,提升了开发效率。而Langchain作为一种支持链式调用的框架,与LiteLLM的结合能够进一步增强应用的灵活性和功能性。
2025-06-20 11:27:42
397
原创 使用GroqChat模型进行自然语言处理任务
在以上代码中,我们首先设置了API密钥,然后实例化了一个ChatGroq模型对象。接下来,我们定义了一个简单的翻译任务消息,并使用模型生成了响应。
2025-06-20 10:13:39
112
原创 使用 Anthropic API 进行工具调用的实验性封装
随着 AI 技术的不断发展,各类语言模型的应用越来越广泛。Anthropic 的 API 提供了一个强大的工具调用功能,使开发者能够轻松创建可以与其他工具集成的智能应用。然而,当前有实验性封装可以帮助开发者在 Anthropic 的 API 尚未正式支持工具调用时进行尝试。这一封装能够产生结构化输出,以促进与工具间的交互。
2025-06-19 17:05:25
135
原创 使用Hugging Face的BGE模型进行文本嵌入
文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有重要意义。BGE模型利用深度学习来生成高质量的文本嵌入,是目前开源社区中领先的选择之一。
2025-06-19 16:49:38
334
原创 使用ChatHuggingFace进行语言模型集成实战
ChatHuggingFace适用于各种自然语言处理任务,如智能客服、内容生成、对话机器人等。通过高效的API设计和丰富的模型选择,开发者能够在不同应用场景中快速部署并调整。安装必要的软件包以支持语言模型集成。我们可以向模型发送消息并获得响应。如果遇到问题欢迎在评论区交流。
2025-06-19 16:47:29
98
原创 使用SerpAPI进行Web搜索的实战指南
SerpAPI是一个用于搜索引擎的API服务,支持多个搜索引擎如Google和Bing。通过Langchain的SerpAPIWrapper组件,我们可以轻松进行搜索操作并获取详细的信息。
2025-06-19 16:46:06
294
原创 使用 Google Cloud El Carro 和 Langchain 存储聊天消息历史
El Carro 是一个开源、注重社区驱动的项目,允许在 Kubernetes 上运行 Oracle 数据库,避免供应商锁定。其强大的声明式 API 支持全面且一致的配置、部署、实时操作和监控。通过与 Langchain 的集成,您可以将 Oracle 数据库的能力扩展到 AI 驱动的体验中,特别是在聊天应用场景中保存消息历史。
2025-06-19 16:43:59
330
原创 使用Google搜索API进行有效查询
Google搜索API允许开发者通过编程方式访问Google搜索引擎。这对于需要在应用程序中集成搜索功能或从Google搜索获取实时数据的项目非常有用。我们可以利用API进行具体查询,获取搜索结果并分析数据。
2025-06-19 16:39:35
241
原创 使用Google Places API进行位置数据查询
Google Places API是由Google提供的一项服务,可以让开发者通过简单的API调用获取详细的地域信息。这在需要展示附近餐馆、酒店或其他服务时非常有用。特别是对于移动应用或基于地理位置的服务,Google Places API提供了丰富的数据支持。
2025-06-19 16:38:36
302
原创 使用Google Cloud Text-to-Speech进行语音合成
Google Cloud Text-to-Speech是一项强大的语音合成服务,提供100多种语音,覆盖多种语言和变体。这项技术依托于DeepMind先进的WaveNet研究和Google强大的神经网络,能够生成自然的语音并确保高保真度。对于开发者而言,利用这项服务可以轻松地将文本转化为逼真的语音。
2025-06-19 16:36:24
91
原创 使用Google Cloud Storage加载文档对象的实战指南
Google Cloud Storage (GCS) 是一种托管服务,专门用于存储非结构化数据。它能够储存大量的文件和对象,并且提供了良好的可扩展性和高可用性。在实际应用中,我们常常需要从GCS中加载各种文档文件,以便进行后续的数据处理或分析。在这篇文章中,我们将重点介绍如何从Google Cloud Storage中的文件对象(通常称为“blob”)加载文档,并展示如何使用自定义加载器来处理不同类型的文件。
2025-06-19 13:53:13
87
原创 使用Google AlloyDB for PostgreSQL加载文档的实战指南
AlloyDB提供了一个易于管理的数据库服务,完全兼容PostgreSQL的特性,使开发者能够轻松迁移和操作现有的PostgreSQL应用。此外,通过Langchain集成,AlloyDB可以用作图矢量存储,使构建AI应用变得更加高效。engine,content_columns=["product_name"], # 指定内容列metadata_columns=["id"], # 指定元数据列。
2025-06-19 13:49:43
235
原创 使用SageMaker自定义端点进行嵌入生成
在人工智能的自然语言处理(NLP)任务中,生成文本嵌入是一个重要步骤。Amazon SageMaker 提供了一种简便的方法来托管自定义NLP模型,并通过其端点生成嵌入。这篇文章将介绍如何在SageMaker上托管Hugging Face模型,并通过自定义的类来进行嵌入生成。
2025-06-19 13:41:40
104
原创 使用 WhyLabs 监控与改进 ML 数据质量和模型表现
WhyLabs 构建在开源库 whylogs 之上,通过生成统计概要文件,实现对任何数据集的快速分析。WhyLabs 提供集中的监控和自定义警报功能,确保您的数据流运行顺畅,并能迅速发现异常。
2025-06-19 13:33:10
470
原创 利用LangChain集成Hazy Research库进行AI开发
Hazy Research 是一个开源的 AI 开发库,专注于提供优质的模型集合及其高效调用。它以manifest库为核心,该库封装了多个模型提供商并增加了缓存和历史记录等功能。
2025-06-18 14:08:54
226
原创 在LangChain中使用ForefrontAI的详细指南
随着人工智能技术的深入发展,越来越多的AI服务和工具涌现,而ForefrontAI已成为业内一股不可忽视的力量。它提供了一个强大的生态系统,让开发者能利用其API构建智能应用。在LangChain中,我们可以通过ForefrontAI的特定包装器轻松集成和使用其功能。
2025-06-18 11:37:17
208
原创 使用EverNote与AI进行便捷笔记管理
EverNote 是一款功能强大的应用程序,专为归档和创建笔记而设计,允许用户将照片、音频以及保存的网页内容嵌入到笔记中。用户可以在虚拟“笔记本”中存储笔记,并支持标记、注释、编辑、搜索和导出功能。
2025-06-18 11:34:46
116
原创 使用DuckDB进行高效SQL查询和文档加载
DuckDB 是一种轻量级的数据库管理系统,专为数据分析设计。它支持标准SQL,可以在Python、R等多种编程语言中使用,因为它在设计上较为简单,易于集成到各种数据分析流程中。DuckDB的内存中操作模式能够让它在分析大数据集时提供惊人的速度和性能。
2025-06-18 11:31:51
161
原创 使用Doctran优化文档处理:从凌乱文本到结构化数据
在自然语言处理(NLP)和大语言模型(LLM)的驱动下,文本处理任务从未如此简单。Doctran是一个基于Python的包,旨在利用LLMs和开源NLP库,将未结构化文本转化为信息密集且适合向量空间检索的文档。可以想象,Doctran就像一个“黑箱”,将凌乱的文本输入,输出整洁、标记良好的文本。
2025-06-18 11:30:04
175
原创 使用DingoDB在LangChain中的应用指南
DingoDB是一款高性能的数据库系统,特别适用于需要快速索引和搜索的大规模数据集。在LangChain中,DingoDB可以被用作向量存储(VectorStore),支持语义搜索和示例选择。这对于自然语言处理和机器学习应用非常有用。
2025-06-18 11:28:32
214
原创 使用CTranslate2加速Transformer模型推理的实战指南
随着Transformer模型在自然语言处理领域的广泛应用,如何高效地在CPU和GPU上进行推理成为了一个迫切需要解决的问题。CTranslate2作为一个C++和Python库,提供了一套自定义的运行时环境,通过诸如权重量化、层融合和批量重排等性能优化技术,大幅提升模型推理速度并降低内存使用。
2025-06-18 11:23:29
319
原创 使用百度云的自然语言处理API进行AI应用开发
百度云通过其Qianfan(千帆)平台提供多种NLP模型和服务,包括语言模型(LLMs)、聊天模型、嵌入模型以及向量存储服务等。这些服务可以方便开发者集成AI功能至各类应用中,如智能客服、内容生成、语义搜索等。
2025-06-18 11:09:16
303
原创 如何使用BagelDB构建自己的AI数据仓库
BagelDB是一个专门为AI数据创建的协作平台,它支持用户创建、分享和管理向量数据集。无论是单独开发的私人项目、企业内部合作,还是公开数据集的贡献,BagelDB都能提供高效的支持。通过BagelDB,开发者可以轻松管理复杂的数据集,并与社区分享成果。
2025-06-18 09:56:30
266
原创 使用华为Ascend NPU结合LangChain进行嵌入模型开发
接着,安装CANN(Compute Architecture for Neural Networks),具体安装指南可以参考。
2025-06-18 09:53:44
358
原创 如何使用Anyscale平台部署、微调与扩展大规模语言模型(LLM)
当前,人工智能的应用已经涵盖了从自然语言处理到图像生成等多个领域。高质量的开源模型不断涌现,使得开发者能够以较低的成本创建复杂的AI应用。然而,管理这些模型的训练、部署和扩展通常需要较高的技术门槛。Anyscale提供了一套完整的解决方案,使得这些过程变得更加简便。
2025-06-18 09:49:34
277
原创 使用AINetwork进行AI模型的去中心化部署
AI Network 是一个为大型 AI 模型提供支持的 Layer 1 区块链平台。它通过去中心化的 GPU 网络以及$AIN 代币,助力 AI 驱动的 NFT(AINFTs)的发展。该平台旨在结合区块链技术和 AI,创建一个强大的去中心化计算生态系统,使开发者可以更高效地进行 AI 模型的训练和部署。
2025-06-18 09:46:33
247
原创 使用FAISS进行相似度搜索与密集向量聚类
FAISS(Facebook AI Similarity Search)是一个用于高效相似度搜索和密集向量聚类的库。它包含了在任意大小的向量集合中搜索的算法,以支持那些可能无法完全放入内存中的大型数据集。此外,还包括用于评估和参数调优的支持代码。本文将深入探讨FAISS的核心原理,以及如何在Python环境中实现其基本功能。
2025-06-18 09:32:15
269
原创 使用Redis存储和检索聊天消息历史
Redis,即Remote Dictionary Server,是一种开源的内存存储系统,通常用于分布式、内存键值数据库、缓存以及消息代理。由于其将所有数据存放在内存中,加上高效的设计,使其能够实现低延迟的读写操作,这使得Redis特别适合需要高速缓存的用例。
2025-06-18 09:28:10
203
原创 使用RAG-Vectara进行多查询:从设置到实现
近年来,基于检索增强生成(RAG)的技术在信息检索和自然语言处理领域引起了广泛关注。RAG技术结合了生成式模型和检索式模型的优点,能够通过从大型语料库中检索相关文档来增强生成式任务的性能。Vectara是一个致力于提供先进多查询能力的平台,它能够在大规模语料库中实现高效检索和精确答案生成。
2025-06-17 17:16:03
247
原创 使用Pinecone与OpenAI结合Cohere进行文档重排序的RAG实现
RAG(Retrieval-Augmented Generation)是一种结合了信息检索和生成模型的方法,通过从外部知识库检索相关文档来增强生成任务的效果。在本模板中,我们将使用Pinecone作为向量存储,并结合OpenAI的模型进行生成。同时,通过Cohere的API实现对文档的重排序,以得到更相关的结果。
2025-06-17 17:10:32
151
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人