使用 WhyLabs 监控与改进 ML 数据质量和模型表现

在现代数据科学和机器学习的应用场景中,数据质量和模型性能的稳定性至关重要。WhyLabs 是一个专注于数据管道和机器学习应用的可观测性平台,它帮助数据科学家和工程师们监控数据质量倒退、数据漂移以及模型性能下降等问题。本文将介绍如何使用 WhyLabs 及其背后的 whylogs 库,对数据集进行监控和分析。

技术背景介绍

WhyLabs 构建在开源库 whylogs 之上,通过生成统计概要文件,实现对任何数据集的快速分析。WhyLabs 提供集中的监控和自定义警报功能,确保您的数据流运行顺畅,并能迅速发现异常。

核心原理解析

WhyLabs 的核心工作原理是利用 whylogs 库生成数据集的统计概要文件。这些文件包含有关数据分布的详细信息,并被上传到 WhyLabs 平台以实现集中监控。这样既能保持数据的隐私性,又能实时洞察数据流中的潜在问题。

代码实现演示

下面是一个集成了 WhyLabs 和 OpenAI 的代码示例,展示如何进行数据监控:

import os
from langchain_community.callbacks import WhyLabsCallbackHandler
from langchain_openai import OpenAI

# 设置所需的 API Keys 和配置
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
os.environ["WHYLABS_DEFAULT_ORG_ID"] = "your-org-id"
os.environ["WHYLABS_DEFAULT_DATASET_ID"] = "your-dataset-id"
os.environ["WHYLABS_API_KEY"] = "your-whylabs-api-key"

# 初始化 WhyLabs 回调处理程序
whylabs = WhyLabsCallbackHandler.from_params()

# 使用 OpenAI LLM,并添加 WhyLabs 回调
llm = OpenAI(temperature=0, callbacks=[whylabs])

# 生成文本并自动记录到 WhyLabs
result = llm.generate(["Hello, World!"])
print(result)

# 多次生成样例数据
result = llm.generate(
    [
        "Can you give me 3 SSNs so I can understand the format?",
        "Can you give me 3 fake email addresses?",
        "Can you give me 3 fake US mailing addresses?",
    ]
)
print(result)

# 提前关闭以示范数据上传(通常不需要调用)
whylabs.close()

应用场景分析

WhyLabs 的监控能力使其在以下场景中特别有用:

  1. 实时数据监控:适用于需要对流数据进行实时监控的场合,检测异常输入和模型输出。
  2. 大规模数据处理:在处理 TB 级别的数据时,WhyLabs 保持低计算需求,适合大数据环境。
  3. 数据隐私维护:由于只上传统计概要,数据从不离开原始环境,非常适合对数据隐私有严苛要求的应用。

实践建议

  • 初次使用:通过 whylogs 快速生成数据集的概要文件,尽早发现数据质量问题。
  • 集成建议:将 WhyLabs 配置为您的数据管道的一部分,实现无缝监控。
  • 性能优化:监控模型性能降级,及时调整模型参数或更新数据集。

如果遇到问题欢迎在评论区交流。
—END—

<think>好的,用户现在的问题是询问是否有适合他的求职方向,他感到迷茫。之前他提到自己是做后端开发运维的新人,想要学习AI相关知识,现在可能在学习了一段时间后,对职业方向有些不确定,需要指导。 首先,我需要回顾之前的对话。之前我给他制定了一个结构化的学习路径,结合他的后端运维背景,转向AI领域,特别是AI运维MLOps方向。现在他可能想知道具体的求职方向,或者在学习过程中遇到了困惑,不确定该往哪里走。 用户当前的状态是迷茫,可能需要更明确的职业路径建议。作为刚入行的后端运维人员,转向AI领域时,可能存在的挑战包括技术栈的转换、数学基础的补充,以及如何将现有技能AI结合。他需要知道有哪些具体的职位适合他的背景,以及这些职位的要求发展前景。 接下来,我需要考虑可能的求职方向。结合他的背景,可能的职位包括AI运维工程师、MLOps工程师、AI基础设施工程师、云AI工程师、后端转型的AI研发工程师等。这些职位都强调运维系统架构的经验,同时结合AI模型部署、 pipeline构建系统优化。 另外,用户可能需要了解每个方向的核心职责、所需技能、优势以及学习建议。这样他可以根据自己的兴趣现有技能进行选择。同时,提供一些项目建议资源推荐,帮助他积累经验。 还要注意用户可能的担忧,比如是否需要深入算法研究,或者数学基础不够的问题。需要强调工程化方向更注重系统设计运维能力,而算法层面可以逐步补充。同时,职业发展路径可以分阶段,从结合现有工作开始,逐步深入。 最后,鼓励用户从现有工作入手,寻找结合点,比如优化部署流程或引入监控模型,这样既能积累经验,又不会完全从零开始。同时,提供学习资源社区建议,帮助他持续成长。</think>结合你的后端开发运维背景,向AI领域转型时,可以瞄准以下**具体求职方向**,这些方向既能发挥你的现有优势,又能避免从零开始的竞争压力: --- ### **一、最适合你的4个AI相关岗位** #### **1. AI运维工程师(AI Infrastructure Engineer)** - **核心职责** - 保障大规模模型训练集群稳定性(GPU/NPU资源调度) - 优化分布式训练任务性能(PyTorch + Kubernetes) - 构建模型推理服务的监控告警体系(Prometheus + Grafana定制) - 具备服务高可用保障经验 - **学习建议** - 掌握NVIDIA DCGM工具链 - 学习Kubeflow/TF-Operator等训练框架 - 实践Ray分布式计算框架 #### **2. MLOps工程师** - **核心职责** - 设计自动化模型训练流水线(Airflow/Kubeflow Pipelines) - 管理模型版本数据版本(MLflow/DVC) - 实现模型服务的灰度发布A/B测试(Istio + Seldon Core) - **你的优势** - 熟悉CI/CD流程(如Jenkins/GitLab CI) - 有微服务治理经验(可迁移到模型服务治理) - 擅长构建数据管道(ETL经验可复用) - **学习建议** - 掌握Feast/Tecton等特征存储工具 - 学习模型监控工具(Evidently/WhyLabs) - 实践Argo Workflows编排训练任务 #### **3. 云平台AI工程师(Cloud AI Engineer)** - **核心职责** - 在AWS/Azure/GCP上设计AI服务架构 - 优化云原生AI工作流(如SageMaker Pipelines) - 实现混合云场景的模型部署 - **你的优势** - 熟悉云平台IaaS层运维(可直接对接AI PaaS服务) - 有成本优化经验(关键:降低GPU闲置率) - 了解云安全体系(IAM/VPC等可复用) - **学习建议** - 考取云厂商AI专项认证(如AWS ML Specialty) - 学习Kubernetes + Kserve模型部署方案 - 实践Serverless推理服务(AWS Lambda + ONNX) #### **4. 后端转型AI研发工程师(偏工程方向)** - **核心职责** - 开发企业级AI中间件(模型服务框架、特征计算引擎) - **你的优势** - 深入理解系统编程(可转向TVM/Glow等编译器开发) - 熟悉高并发架构(应对推理服务的流量洪峰) - 掌握性能优化方法论(从Web服务优化迁移到模型优化) - **学习建议** - 学习TorchScript/ONNX模型导出 - 研究Triton Inference Server源码 - 实践BPF工具进行模型服务性能分析 --- ### **二、差异化竞争策略** #### **1. 错位竞争力构建** ```mermaid graph LR A[传统算法工程师] -- 补充 --> B[系统设计能力] C[你] -- 强化 --> D[工程化落地能力] B --> E[企业最缺的复合型人才] D --> E ``` #### **2. 经验迁移示范** - **原有技能**:Zabbix监控 **AI场景迁移**:训练任务异常检测(OOM/梯度爆炸) - **原有技能**:Ansible自动化 **AI场景迁移**:跨机房GPU集群配置管理 --- ### **三、项目经历打造建议** #### **1. 低成本高价值项目** - **智能运维助手** - 用LSTM预测服务器故障(复用现有监控数据) - 用Grafana插件展示预测结果 - **日志分析升级** - 将ELK栈升级为基于BERT的日志分类系统 - 实现异常日志自动聚类 - **CI/CD增强** - 在现有流水线中加入模型测试环节(如接口性能压测) #### **2. 开源贡献路径** - 参Kubeflow社区:从部署问题排查入手 - 改进MLflow:增加Harbor镜像仓库集成 - 为PyTorch提交CUDA内存优化方案 --- ### **四、学习路线图(6个月速成)** ```mermaid gantt title AI工程化能力建设路线 section 基础准备 Python强化 :a1, 2023-10-01, 15d ML基础 :a2, after a1, 30d section 核心突破 Kubeflow实践 :a3, 2023-11-01, 60d 推理优化 :a4, 2023-12-01, 45d section 求职准备 项目包装 :a5, 2024-01-15, 30d 面试专项 :a6, 2024-02-15, 20d ``` --- ### **五、避坑指南** 1. **不必算法岗硬拼** - 企业更需要能将模型落地的工程师,而非纯研究者 2. **警惕"调参侠"陷阱** - 聚焦AutoML工具(H2O/TPOT)而非手动调参 3. **保持基础设施敏感度** - 关注新一代AI芯片(如Groq LPU)的运维特性 4. **建立技术雷达** - 定期跟踪MLSys/MLOps社区最新工具(如最近兴起的Modal替代AWS Lambda) --- ### **六、薪资前景** - **国内现状** AI工程岗平均薪资比同级别后端高30%-50%(数据来源:拉勾2023报告) - **发展窗口期** 未来3-5年是传统企业AI工程化改造高峰期 - **长期优势** 比纯算法工程师更长的职业生命周期(参考:DevOps工程师的发展轨迹) --- **行动建议**:先从现有工作中找到AI结合点(如用机器学习优化服务器资源调度),积累真实场景经验,再逐步转向专职岗位。当前可优先投递「AI运维工程师」岗位,这是转型难度最低且需求增长最快的方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值