在现代数据科学和机器学习的应用场景中,数据质量和模型性能的稳定性至关重要。WhyLabs 是一个专注于数据管道和机器学习应用的可观测性平台,它帮助数据科学家和工程师们监控数据质量倒退、数据漂移以及模型性能下降等问题。本文将介绍如何使用 WhyLabs 及其背后的 whylogs 库,对数据集进行监控和分析。
技术背景介绍
WhyLabs 构建在开源库 whylogs 之上,通过生成统计概要文件,实现对任何数据集的快速分析。WhyLabs 提供集中的监控和自定义警报功能,确保您的数据流运行顺畅,并能迅速发现异常。
核心原理解析
WhyLabs 的核心工作原理是利用 whylogs 库生成数据集的统计概要文件。这些文件包含有关数据分布的详细信息,并被上传到 WhyLabs 平台以实现集中监控。这样既能保持数据的隐私性,又能实时洞察数据流中的潜在问题。
代码实现演示
下面是一个集成了 WhyLabs 和 OpenAI 的代码示例,展示如何进行数据监控:
import os
from langchain_community.callbacks import WhyLabsCallbackHandler
from langchain_openai import OpenAI
# 设置所需的 API Keys 和配置
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
os.environ["WHYLABS_DEFAULT_ORG_ID"] = "your-org-id"
os.environ["WHYLABS_DEFAULT_DATASET_ID"] = "your-dataset-id"
os.environ["WHYLABS_API_KEY"] = "your-whylabs-api-key"
# 初始化 WhyLabs 回调处理程序
whylabs = WhyLabsCallbackHandler.from_params()
# 使用 OpenAI LLM,并添加 WhyLabs 回调
llm = OpenAI(temperature=0, callbacks=[whylabs])
# 生成文本并自动记录到 WhyLabs
result = llm.generate(["Hello, World!"])
print(result)
# 多次生成样例数据
result = llm.generate(
[
"Can you give me 3 SSNs so I can understand the format?",
"Can you give me 3 fake email addresses?",
"Can you give me 3 fake US mailing addresses?",
]
)
print(result)
# 提前关闭以示范数据上传(通常不需要调用)
whylabs.close()
应用场景分析
WhyLabs 的监控能力使其在以下场景中特别有用:
- 实时数据监控:适用于需要对流数据进行实时监控的场合,检测异常输入和模型输出。
- 大规模数据处理:在处理 TB 级别的数据时,WhyLabs 保持低计算需求,适合大数据环境。
- 数据隐私维护:由于只上传统计概要,数据从不离开原始环境,非常适合对数据隐私有严苛要求的应用。
实践建议
- 初次使用:通过 whylogs 快速生成数据集的概要文件,尽早发现数据质量问题。
- 集成建议:将 WhyLabs 配置为您的数据管道的一部分,实现无缝监控。
- 性能优化:监控模型性能降级,及时调整模型参数或更新数据集。
如果遇到问题欢迎在评论区交流。
—END—