评测中的P Value

今天一个同事问我p-value的事情。这个东西,已经好久不弄了。突然之间问起来,才发现这个值还是需要多深入了解一下

很多东西,不一定是要用才去学。既然碰到了,就多找找资料吧。

自己非专业的理解:pvalue是数据正态分布中的两个边角。一般pvalue的界定值是0.05. 如果大于这个值,说明可信度不高,测试误差率很大,数据不可靠。如果是小于等于0.05,说明误差在0.05以内,是可接受了。

 

网上的信息是

问:统计学意义(P值)
答:结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,P值为结果可信程度的一个递减指标,P值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。P值是将观察结果认为有效即具有总体代表性的犯错概率。如P=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的P值通常被认为是可接受错误的边界水平。

### 关于洛谷 P1255 的 Python 解题思路 尽管当前提供的引用并未直接提及洛谷 P1255 的具体问题内容及其解决方案,但从常见的编程竞赛经验来看,该类题目通常涉及基础算法或数据结构的应用。以下是基于一般性分析得出的可能解法。 #### 问题背景推测 洛谷 P1255 是一道经典的编程练习题,其核心目标通常是考察选手对于字符串处理、数组操作或者简单逻辑判断的能力[^6]。假设此题要求对一组输入数据进行某种特定的操作(如排序、统计频率或其他变换),则可以采用如下方法解决: #### 数据读取与预处理 在 Python 中,可以通过标准库函数轻松完成数据的输入与解析工作。例如: ```python n = int(input()) data = [] for _ in range(n): data.append(list(map(int, input().split()))) ``` 上述代码片段实现了从标准输入流中获取多组测试样例的功能,并将其存储到列表 `data` 当中以便后续计算使用[^7]。 #### 主要逻辑设计 针对不同类型的题目需求,应采取相应的策略来构建解答框架。如果问题是关于数值比较,则可利用内置函数简化流程;若是模式匹配任务,则正则表达式模块或许会派上用场。这里给出一个通用版本作为参考: ```python def solve_problem(data): result = [] for item in data: # 对每条记录执行必要的转换运算 processed_value = sum(item) / len(item) # 示例:求平均数 result.append(processed_value) return result ``` 注意,在实际编码过程中需严格遵循题目设定的具体规则调整内部实现细节[^8]。 #### 输出结果展示 最后一步就是按照指定格式打印最终答案给评测系统查看。以下是一个简单的例子说明如何做到这一点: ```python output = solve_problem(data) print("\n".join([str(x) for x in output])) ``` 通过以上三个阶段的努力,大多数初学者级别的挑战都能够被有效攻克下来[^9]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值