R语言缓释制剂QBD解决方案之一

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》缓释制剂包衣处方研究的R语言解决方案。

ER聚合物包衣处方优化研究

基于初步风险评估和初始可行性研究,进行带3个中心点的24-1分式析因DOE。药物的释放被识别为CQA。本研究的目的是研究包衣剂的用量、PVP用量、TEC用量、老化对药物释放的影响。

研究的响应是药物释放20%,50%,80%的时间,使用USP apparatus 2 50 rpm pH 6.8 磷酸盐缓冲液。

32是研究总结和可接受标准。表33是实验结果。

影响T50的显著因子

因为DOE中包含中心点,用调整模型检查二次效应,方差分析的结果见表34。

因为T50的二次效应并不显著,将中心点包含于模型。图23所示的半正态图和表35的ANOVA分析结果表明,影响T50的显著因子为A、B、C。

library(FrF2)

study1<-FrF2(nruns=8, nfactors=4, generator=c("ABC"), ncenter=3, replications=1,randomize=FALSE)

y1=c(1.29,2.92,0.81,2.39,1.48,3.07,1.08,2.69,2.12,2.02,1.91)

y2=c(3.37,6.71,2.79,5.81,4.15,7.54,3.27,6.33,5.12,4.98,4.83)

y3=c(8.67,17.74,5.98,16.04,9.12,19.18,7.42,16.48,13.07,12.61,12.27)

study1 <-add.response(study1, y1, replace=FALSE)

study1 <-add.response(study1, y2, replace=FALSE)

study1 <-add.response(study1, y3, replace=FALSE)

print( study1, std.order=TRUE)

A.num <-study1$A

levels(A.num) <- c(20,40)

B.num <- study1$B

levels(B.num) <- c(0,10)

C.num <- study1$C

levels(C.num) <- c(2,10)

D.num <- study1$D

levels(D.num) <- c(0.5,1.5)

A.num <- as.numeric(as.character(A.num))

B.num <- as.numeric(as.character(B.num))

C.num <- as.numeric(as.character(C.num))

D.num <- as.numeric(as.character(D.num))

mod1<-lm(y2 ~ A+B+C+D, data=study1)

> anova(mod1)

Analysis of Variance Table

Response: y2

          Df  Sum Sq Mean Sq  F value    Pr(>F)   

A          1 20.5120 20.5120 859.1964 1.045e-07 ***

B          1  1.5931  1.5931  66.7315 0.0001812 ***

C          1  0.8515  0.8515  35.6677 0.0009883 ***

D          1  0.0000  0.0000   0.0005 0.9824863   

Residuals  6  0.1432  0.0239                      

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

SS Pure Error=((5.12)^2+(4.98)^2+(4.83)^2-(5.12+4.98+4.83)^2/3)=0.042

纯误差的自由度为2

MS Pure Error =0.042/2=0.021

SS Curvature=8*3*((3.37+6.71+2.79+5.81+4.15+7.54+3.27+6.33)/8-(5.12+4.98+4.83)/3)^2/(8+3)= 0.0008367424

弯曲性的自由度为1

MS Curvature=0.0008367424/1=0.0008367424

SS lack of fit=SS Residuals- SS Pure Error=0.10

失拟的自由度为4

MS lack of fit=0.10/4=0.025

F Curvature=MS Curvature/MS Residuals = 0.0334697

F lack of fit=MS lack of fit/M1S Pure Error=1.190476

Pr(>F) Curvature=1-pf(0.0334697,1,6)= 0.8608647

Pr(>F) lack of fit=1-pf(1.190476,4,2)= 0.5040667

最终的方差分析表如下:

Response: y2

            Df  Sum Sq            Mean Sq   F value    Pr(>F)   

A            1 20.5120             20.5120  859.1964  1.045e-07 ***

B            1  1.5931              1.5931   66.7315  0.0001812 ***

C            1  0.8515              0.8515   35.6677  0.0009883 ***

D            1  0.0000              0.0000    0.0005  0.9824863   

Curvature     1  0.0008367424  0.0008367424 0.0334697  0.8608647

Residuals     6  0.1432               0.0239    -           -

lack of fit     4  0.10                0.025     1.190476    0.5040667  

Pure Error    2  0.042               0.021     -           -

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

library(daewr)

fullnormal(coef(mod1)[-1], alpha=.025)

library(BsMD)

LenthPlot(mod1, main = "Lenth Plot of Effects")

effects <-coef(mod1)

effects <-effects[2:4]

effects <-effects[ !is.na(effects) ]

halfnorm(effects, names(effects), alpha=.25)

mod1<-lm(y2 ~ A.num +B.num +C.num+D.num, data=study1)

library(rsm)

contour(mod1, ~ A.num +C.num)

persp(mod1, ~ A.num +B.num, zlab=" y2", contours=list(z="bottom"))

mod2<-lm(y1 ~ A+B+C+D, data=study1)

anova(mod2)

modv<-lm(y3 ~ A*B*C*D, data=study1)

anova(modv)

因子A是影响释放的主要因子,其次是     B,C。其它项并不显著影响。

additional pore former T50的影响见图24。最终使用Kollicoat SR 30 D 而没有添加pore former

聚合物包衣剂和TEC用量对T50的效应见图25.因为使用10%TEC时包衣聚合。所以TEC的用量减少到5%。

T20和T80有相似的结果。没有二次项和交互作用。

DOE研究结果显示使用25%聚合物,5%TEC,15%滑石粉可以获得最优特征。

研究了Kollicoat SR 30 D 的批间差异,并且对药物释放没有影响。

最终处方

因为希望ER包衣丸压片后的释放不受影响,时行了包衣丸压片的研究。研究了药物释放与压片力的关系。压片后药物释放显著变快,提示压片后丸子有破损。因此需要添加cushioning agents ,基于文献选择MCC

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lishaoan77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值