PaddleSeg开始与搭建

本文介绍了PaddleSeg的优缺点,重点讲解了GPU版本的conda环境搭建,包括查看CUDA版本、创建conda环境和安装PaddleSeg。此外,还详细阐述了PaddleSeg的目录结构和数据集格式要求,强调了数据集应包含的元素以及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为使用的比较多,所以来总结一下。
先介绍一下,为什么用PaddleSeg
1、搭建模型更容易,和MMSeg相比,配置更加简单,容易上手
缺点是
1、目前版本还无法生成热力图,我看Paddle官方已经出比赛在解决这个问题了
2、和主流pytorch存在一定差别,模型迁移时需要熟悉两种配置;MMSeg是利用pytorch搭建的,但配置麻烦
目前对我来讲,PaddleSeg和MMSeg各有缺点,更多的学习才能解决这些问题。

1conda环境搭建(gpu版本)

1.查看cuda版本

nvcc -V

在这里插入图片描述nvcc -V 可以查看CUDA的版本信息
输入命令 nvidia-smi 可以在输出的信息中查看到CUDA版本。需要注意的是,这个命令显示的是CUDA驱动的版本,而不是CUDA工具包的版本。

nvidia-smi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weightOneMillion

感谢未来的亿万富翁捧个钱场~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值