【AI认证】微软 Azure AI-102 认证攻略:文档智能 (Document Intelligence)

目录

  1. 引言
  2. 学习目标
  3. Azure AI 文档智能概览
  4. 文档智能模型:预构建与自定义
  5. 应用场景:文档智能的无限可能
  6. 使用 Azure AI 文档智能:快速上手
  7. 常见问题解答 (FAQ)
  8. 总结

引言

在当今数据驱动的世界中,海量的关键信息隐藏在各种文档之中,例如发票、合同、报告等。Azure AI 文档智能正是解锁这些非结构化数据的强大钥匙。它利用先进的机器学习光学字符识别 (OCR) 技术,能够自动化地从文档中提取文本、键值对、表格以及更多结构化信息,将文档数据转化为可操作的洞察。

对于备考 Azure AI-102: Designing and Implementing an Azure AI Solution 认证 的学员来说,文档智能是至关重要的知识领域。本模块将带你全面掌握文档智能的核心概念、关键功能、应用场景,以及如何在 Azure 中配置和使用这项服务,助力你顺利通过考试并掌握实际应用技能。

学习目标

完成本模块的学习后,你将能够:

  • 理解 Azure
### 如何创建和使用 Azure AI 应用程序 #### 使用 Azure Translator API 进行编程访问 为了在 Jupyter Lab 中编程访问 Azure Translator API,开发者可以利用 Python 的 `requests` 库发送 HTTP 请求给 API 终结点。这使得翻译文本变得简单而高效[^1]。 ```python import requests subscription_key = "your-subscription-key" endpoint = "https://api.cognitive.microsofttranslator.com/" path = '/translate?api-version=3.0' constructed_url = endpoint + path headers = { 'Ocp-Apim-Subscription-Key': subscription_key, 'Content-type': 'application/json', 'Ocp-Apim-Subscription-Region': 'westus2', # Replace with your region identifier. } body = [{ 'text': 'Hello, world!' }] request = requests.post(constructed_url, headers=headers, json=body) response = request.json() print(response) ``` 这段代码展示了如何设置请求头、构建 URL 并向 Azure Translator 发送 POST 请求以实现文本翻译功能。 #### 利用 Azure AI 文档智能处理文件 对于更复杂的文档处理需求,Azure 提供了专门针对文档智能化的服务——Document Intelligence。要开始工作,需先初始化 `DocumentModelAdministrationClient` 实例,并提供必要的认证信息以便连接至服务端口[^2]。 ```python from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential endpoint = "<your-endpoint>" key = "<your-api-key>" document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key)) ``` 此片段说明了怎样配置客户端对象用于后续调用分析函数或其他操作。 #### 构建基于 RAG 和 Azure OpenAI 的聊天机器人 另一个有趣的案例是在 GitHub 上开源的一个项目,它实现了带有检索增强生成 (RAG) 功能的对话系统。该项目不仅集成了 Azure Search 来索引大量数据源,还借助于 Azure OpenAI Service 完成高质量的回答生成任务[^3]。 ```bash git clone https://github.com/azure-samples/azure-search-openai-demo.git cd azure-search-openai-demo pip install -r requirements.txt # Follow further instructions from README.md to set up and run the application locally or remotely using VSCode dev container feature as mentioned in the link provided earlier. ``` 上述命令指导用户克隆仓库并安装依赖项,准备运行该应用程序。 #### 部署智能应用到 Azure 容器环境 最后,在考虑将开发完成的应用部署上线时,可以选择 Azure Container Apps 作为托管平台。这样做允许团队快速迭代产品特性的同时享受云原生架构带来的灵活性与扩展能力[^4]。 ```yaml # Example of a Dockerfile snippet that could be part of an intelligent app deployment process on Azure Containers App service. FROM python:3.9-alpine WORKDIR /app COPY . . RUN pip install --no-cache-dir -r requirements.txt CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "$PORT"] ``` 以上 YAML 片段代表了一个典型的 Docker 文件结构,适用于打包 Flask 或 FastAPI 类型 Web 框架下的 RESTful 微服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值