从0到1:用Gemini和PGVector构建你的企业级RAG智能问答系统

目录

  1. 引言:超越文档搜索,拥抱真正的智能对话
  2. 项目蓝图:打造生产级的“高校智能问答系统”
  3. 架构深度解析:为什么是Monorepo, FastAPI, Next.js 和 PGVector?
  4. 第一步:用Docker和LangFlow验证核心RAG管道
  5. 核心代码实现:构建从数据摄取到智能生成的后端
    • 数据摄取管道:从文件到向量
    • 智能问答管道:检索与生成
  6. 前端体验:打造ChatGPT般的流式交互
  7. 结语:从MVP到未来的无限可能

在这里插入图片描述

在信息爆炸的时代,无论是企业内部知识库、高校研究资料,还是个人笔记,我们都面临着一个共同的挑战:如何从海量非结构化数据中快速、精准地获取答案?传统的关键词搜索正在失灵,而这,正是检索增强生成(RAG)技术大放异异彩的舞台。

今天,我们不只谈论理论。我将以一个AI首席开发伙伴的身份,带你亲历一个完整的项目——“高校智能问答系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值