目录
- 引言:超越文档搜索,拥抱真正的智能对话
- 项目蓝图:打造生产级的“高校智能问答系统”
- 架构深度解析:为什么是Monorepo, FastAPI, Next.js 和 PGVector?
- 第一步:用Docker和LangFlow验证核心RAG管道
- 核心代码实现:构建从数据摄取到智能生成的后端
- 数据摄取管道:从文件到向量
- 智能问答管道:检索与生成
- 前端体验:打造ChatGPT般的流式交互
- 结语:从MVP到未来的无限可能
在信息爆炸的时代,无论是企业内部知识库、高校研究资料,还是个人笔记,我们都面临着一个共同的挑战:如何从海量非结构化数据中快速、精准地获取答案?传统的关键词搜索正在失灵,而这,正是检索增强生成(RAG)技术大放异异彩的舞台。
今天,我们不只谈论理论。我将以一个AI首席开发伙伴的身份,带你亲历一个完整的项目——“高校智能问答系