海棠AI实验室
高级软件工程师,高级系统架构师,高级信息系统项目管理师,高级AIGC应用工程师海棠AI实验室导师,主要研究人工智能及大数据和云计算。主持多个国家和省部级项目,发表十余篇核心期刊论文,专利一项,软件著作权一项。工信部《信息系统项目管理师》高级认证,《AIGC提示词工程师》高级认证,Redhat高级认证。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
“智途领航“ - AI人才认证与职业提升平台(栏目引言)
本专栏致力于为AI领域从业者和求职者提供全方位的认证指导和职业发展建议。我们将深入解析主流AI认证体系,分享求职经验,探讨职业发展路径,助力读者在AI时代实现职业价值的提升。原创 2025-02-28 15:31:19 · 79 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(八)云计算职责的类型
云计算的责任模型是指云服务提供商(如MicrosoftAzure)与用户(企业或开发者)之间各自承担的责任范围。随着云服务的不同类型的出现,服务商与客户的责任逐渐被细分。通常,这些责任会按照从基础设施到应用程序的层级进行分配,涉及硬件、网络、操作系统、应用程序等多个方面。基础设施即服务(IaaS)是云计算的基础层,它为企业提供了虚拟化的计算资源,用户可以根据需要购买计算、存储、网络等资源。Azure的IaaS服务模型涵盖了虚拟机、虚拟网络、存储服务等资源。原创 2025-01-06 16:39:56 · 984 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(五)什么是Azure
Azure是微软推出的云计算服务平台,提供从基础设施即服务(IaaS)、平台即服务(PaaS)到软件即服务(SaaS)的全面云服务。它支持Windows和Linux环境,可以帮助企业降低成本、提高效率、增强创新能力。Azure作为微软的核心云平台,不仅提供了计算、存储、网络等基础设施服务,还涵盖了人工智能、大数据、物联网等创新领域。凭借其强大的技术能力和全球化的基础设施,Azure正成为全球企业数字化转型的首选平台。随着技术的不断发展,Azure将在未来为企业带来更多的创新服务和解决方案。原创 2025-01-06 16:18:04 · 1138 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(六)云计算的优势
云计算(CloudComputing)指通过互联网将计算资源(如存储、处理能力、数据库等)作为服务提供给用户,用户无需拥有这些资源的实际物理硬件和软件。云计算的最大优势在于其“按需付费”的模式,用户可以根据实际需要选择和使用资源,而无需承担传统IT设施的高昂前期投资和运维成本。对于企业来说,云计算使得它们能够快速实现技术部署、扩展业务规模并保持灵活性,最大程度地提升了业务效率和市场响应能力。原创 2025-01-06 16:23:13 · 1244 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(四)云服务
云计算服务通常通过互联网提供,包括从基础的计算能力到复杂的数据存储和管理服务,帮助企业按需获取计算资源,灵活部署和扩展应用。Azure作为微软的云计算平台,提供了多种服务类型来支持各种业务需求。从计算、存储到网络和数据库,Azure的云服务无疑是现代企业数字化战略的重要组成部分。关系型数据库:例如AzureSQLDatabase,适用于传统的事务型应用。NoSQL数据库:如AzureCosmosDB,支持灵活的、可扩展的非关系型数据存储。内存数据库。原创 2025-01-06 16:12:14 · 1123 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(三)什么是云计算?
云计算,简单来说,就是通过互联网使用远程服务器来存储、管理和处理数据,而不依赖本地服务器或个人计算机。这种通过网络提供计算资源的方式,使得企业和个人可以按需使用IT资源,而不需要承担昂贵的硬件购置成本和维护费用。从最初的专用服务器到如今的云计算,技术的发展使得企业和个人能够更加高效、灵活、经济地使用计算资源。云计算技术的不断演进和应用场景的不断扩展,使得它已经成为了现代信息技术的重要组成部分。在学习和掌握Azure认证考试内容时,理解云计算的核心概念和应用将为您的认证之路提供坚实的基础。原创 2025-01-06 16:05:44 · 1333 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南(二)考试概述
微软的Azure作为全球领先的云平台,越来越多的企业开始采用它来优化IT基础设施、实现数字化转型。在众多Azure认证考试中,AZ-900作为一项基础认证,为那些想要进入云计算和Azure生态系统的初学者提供了一个理想的起点。本篇文章将帮助您全面了解AZ-900考试的结构、考试内容、备考策略以及如何通过这项认证考试。通过这一指南,您将能够掌握必备的基础知识,做好考试准备,顺利通过考试。原创 2025-01-06 15:58:26 · 1173 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(七)云计算的类型
云计算,作为一种革新的技术,已经在当今的企业与个人生活中扮演了不可或缺的角色。从传统的本地计算到依赖互联网的分布式云计算,企业和开发者可以在云端获取灵活、高效和按需分配的资源。软件即服务(SaaS)平台即服务(PaaS)基础设施即服务(IaaS)。每种类型各具特点,适用于不同的业务需求和技术场景。本文将深入探讨这三种云计算模型,并帮助您在Azure云计算服务中选择合适的方案。原创 2025-01-06 16:32:56 · 1245 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(九)云部署模型
公有云是云计算服务中最为广泛采用的部署模型。它指的是由第三方云服务提供商(如Azure)构建和管理的云环境,服务和基础设施通过互联网提供给公众或多个租户使用。用户无需购买和维护自己的硬件资源,只需按需支付使用费用。Azure提供的公有云服务涵盖了计算、存储、数据库、人工智能等多种服务,企业可以根据需求快速部署和扩展应用。私有云是一种在企业内部部署的云计算环境,由企业自己管理和维护。这种模型提供了完全的控制权和高度的定制能力。原创 2025-01-06 16:49:56 · 681 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(十一)CAPEX 与 OPEX
CAPEX是“CapitalExpenditure”的缩写,意指资本支出。在企业的财务管理中,CAPEX通常指的是长期资产的购置或建设所需的支出。例如,购买数据中心的硬件设施、服务器、存储设备等。CAPEX通常需要一次性投入较大金额,并且在使用过程中逐步折旧。CAPEX与OPEX是云计算成本模型中的两个重要概念,它们各自有着不同的适用场景和优势。在Azure云平台中,企业可以根据自身的需求灵活选择合适的支出模式,从而实现更好的财务管理和资源优化。原创 2025-01-06 17:05:26 · 893 阅读 · 0 评论 -
Azure基础认证(AZ-900)完全指南:(十二)云架构术语
系统保持运行状态的能力:高可用性保障了云平台能够在硬件、软件甚至网络故障的情况下,尽量减少服务中断的时间。通过设计冗余和负载均衡,系统能够自动调整,确保服务始终处于可用状态。服务中断最小化:通过多区域部署、自动故障转移等技术,云架构能最大限度地减少服务中断的时间。企业可以确保应用即使在发生局部故障时,也能够迅速恢复,保证业务不受影响。用户体验的连续性保证:高可用性要求在系统出现故障时,用户不应感知到任何服务中断。Azure提供了内建的高可用性架构,帮助开发人员设计出始终可用的云服务。原创 2025-01-06 19:30:14 · 760 阅读 · 0 评论 -
Azure基础认证(AZ-900)认证概述
在现代IT领域,云计算的影响力无处不在。作为全球第二大云服务提供商,微软的Azure云平台已经在众多行业中占据了举足轻重的地位。而对于许多IT从业者、技术决策者和企业管理人员而言,掌握Azure的基础知识不仅是职业发展的必经之路,更是进入这一行业的敲门砖。Azure基础认证(AZ-900)应运而生,旨在帮助那些希望了解云计算、探索Azure平台的个人和团队获得清晰的基础知识框架和专业认证。本文将为您提供全面的AZ-900认证备考指南,帮助您从入门到考试通过。原创 2025-01-04 07:57:30 · 1054 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(五) 数据集
在人工智能和机器学习中,数据集是由具有相似数据结构和逻辑关联的数据单元构成的集合。它是训练、验证和测试模型的核心资源。数据集的质量、规模和多样性都直接影响机器学习模型的训练效果和性能。数据集在机器学习中扮演着至关重要的角色,Azure机器学习平台为开发者提供了便捷的工具和强大的资源,帮助他们高效地利用各种数据集进行模型训练和测试。无论是经典的MNIST和COCO数据集,还是Azure平台提供的开放数据集,都为机器学习提供了丰富的素材。原创 2025-01-04 09:02:48 · 711 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(三)AI层级
人工智能(AI)是一门模拟、扩展和增强人类智能的技术,它能够自主执行任务,做出智能决策并解决复杂问题。AI的目标不仅仅是模仿人类的行为,还能够在自适应学习的基础上,不断改进决策和预测能力。在AI-900认证的背景下,理解AI的基本定义和应用范围至关重要。人工智能的基本概念是通过计算机系统来模仿人类的智能活动,包括学习、推理、计划、决策等。AI不仅仅是一个简单的程序,而是一种系统化的模拟人类思维和行为的方式。原创 2025-01-04 08:42:54 · 842 阅读 · 0 评论 -
微软 Azure AI-900 认证指南(十四)Jupyter Notebooks
Jupyter Notebooks 在数据科学和AI开发中的地位不可撼动。从最初的 IPython 到现代的 Jupyter Labs,Jupyter 已经发展成一个完整、强大的开发环境,支持跨平台、多语言、云服务集成等多种功能。无论你是从事数据科学、机器学习、深度学习,还是 AI 开发,Jupyter Notebooks 都是一个必备的工具。原创 2025-01-04 16:21:08 · 864 阅读 · 0 评论 -
微软 Azure AI-900 认证指南(十三)评估指标
评估指标是衡量机器学习模型性能的标准工具。它们不仅帮助我们了解模型在训练和测试阶段的表现,还能揭示其在真实场景中的有效性和可靠性。量化模型性能:通过具体的数字衡量模型在各个维度上的表现。比较不同模型:对比多个模型的优劣,选择最适合特定任务的模型。指导模型优化:识别模型的短板,指导数据集和模型的调整方向。确保模型可靠性:确保模型在实际环境中的表现稳定和可靠。在考试中,理解评估指标并能在实际应用中运用它们是成功的关键。原创 2025-01-04 16:12:15 · 926 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(六)数据标注
数据标注是指对原始数据(如图像、文本、音频或视频)进行人工或自动的标记,使其变得具有语义意义,方便机器学习模型进行训练。标注的目的是为了让机器学习算法能够识别和理解这些数据,从而进行有效的预测和分类。例如,在图像分类任务中,数据标注可能就是为每张图片添加一个类别标签,如“猫”或“狗”。在文本分类任务中,则可能为每段文本指定一个类别标签,如“体育”或“政治”。这些标注的数据被用作监督学习中的训练数据,通过这些标签,机器学习模型能够学习从输入数据到目标输出之间的映射关系。原创 2025-01-04 12:48:56 · 883 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(二)考试的核心内容
在开始深入学习之前,首先要对Azure AI-900认证考试有一个全面的了解。与其他微软认证考试一样,Azure AI-900的内容会定期更新,通常为小幅度调整,确保其与最新的技术发展和市场需求保持同步。需要注意的是,只有当考试代号发生变化时(例如从AI-900更名为AI-901),才意味着考试内容进行了重大改版。因此,在备考期间要及时关注官方发布的最新资讯和更新信息。原创 2025-01-04 08:31:10 · 1008 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十一) 嵌入向量全面解析
嵌入向量是一种数据表示方法,可用于捕捉数据之间的语义关系。它们广泛应用于自然语言处理(NLP)、计算机视觉(CV)和推荐系统等领域。原创 2025-01-16 22:25:35 · 1119 阅读 · 0 评论 -
微软 Azure AI-900 认证指南(十六)分类
分类是机器学习中的一种监督学习任务,它将输入数据映射到一个有限的类别集合。具体来说,分类任务的目标是预测一个数据点属于哪一个类别或类。该方法通过已标记的数据集来训练模型,模型根据这些训练数据学会区分不同类别的数据,从而实现对新数据的预测。分类任务一般分为二分类和多分类两大类。二分类问题:任务是将数据分为两个类别。例如,判断一封邮件是“垃圾邮件”还是“正常邮件”。多分类问题:任务是将数据分为三个或更多类别。原创 2025-01-04 16:41:46 · 837 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十五) 神经网络与深度学习
神经网络模拟了人脑的结构和功能,旨在通过“神经元”之间的连接传递信息,进而进行数据处理和模式识别。神经网络由多个相互连接的节点(神经元)组成,每个节点都代表一个简单的数学计算。输入层(Input Layer):该层接收数据输入,数据可以是图像、文本或其他类型的原始信息。隐藏层(Hidden Layers):隐藏层对输入数据进行处理,提取数据中的特征。这些层之间的连接权重是网络学习的关键。输出层(Output Layer):该层生成网络的最终预测结果。原创 2025-01-18 20:26:30 · 1121 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十六) GPU
在备考Azure AI-102认证的过程中,深入理解GPU(图形处理单元)在机器学习和人工智能任务中的应用至关重要。随着深度学习和大规模数据处理的需求急剧增长,GPU的优势逐渐显现,成为加速模型训练、推理以及数据处理的核心工具。本文将探讨GPU在Azure平台中的应用,帮助你掌握其在机器学习项目中的关键作用,助力你顺利通过Azure AI-102认证考试。原创 2025-01-19 17:14:57 · 900 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十七) CUDA
CUDA是NVIDIA推出的一个并行计算平台和编程模型,它使得开发者能够在NVIDIA GPU上执行通用计算任务,从而显著加速复杂计算任务。CUDA允许开发者利用GPU的数千个计算核心,以并行方式处理大规模数据集,极大提升计算效率。🤖 线程(Thread):最小执行单元,每个线程执行计算任务。🛡️ 线程块(Block):线程集合,每个线程块共享内存。🌐 网格(Grid):多个线程块组成整个计算任务。🔀 流(Stream):用于管理异步计算任务,优化计算流程。原创 2025-01-19 17:26:16 · 957 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十八) Jupyter Notebooks
Jupyter Notebooks 是一个开源的交互式编程环境,旨在帮助开发者通过简洁直观的方式编写和执行代码,同时支持文档撰写与数据展示。它支持多种编程语言,包括PythonR和Julia,并且可以通过安装不同的内核,扩展对其他语言的支持。Jupyter Notebooks 和 Jupyter Labs 提供了强大的编程、文档和数据可视化功能,是数据科学家和 AI 开发人员必备的工具。通过与 Azure 生态系统集成,Jupyter Notebooks 可助力机器学习与数据分析,提高工作效率。在。原创 2025-01-20 12:37:00 · 807 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十二) AI的隐私与安全
个人身份信息(PII)是指任何能够识别个体身份的信息。这些信息可以被直接或间接地关联到某个人,并且需要特别保护。基本身份信息:如姓名、地址、电话号码、电子邮件等。生物特征数据:如指纹、面部识别、虹膜扫描等。行为习惯数据:如在线活动记录、购物习惯、浏览历史等。位置信息:如GPS数据、定位数据等。随着AI技术的不断发展,隐私和安全问题将持续成为技术领域的重要议题。Azure AI平台通过多层次的安全保护措施,确保用户数据的隐私和系统的安全性。原创 2025-01-22 21:41:08 · 1050 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (十九) AI的包容性
AI包容性设计对于技术的未来发展至关重要。通过多元化的数据收集、技术创新以及文化适配,我们可以确保AI技术不仅服务于少数群体,更能惠及全球每一个用户。在Azure平台上,开发者可以利用丰富的AI工具和服务,构建出更加包容的智能系统,推动社会的进步和公平。原创 2025-01-22 21:49:06 · 725 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (三十) 深度对比分析 Azure AI服务与Azure AI Studio
Azure AI生态系统包含多个组件,为开发者提供从API级别服务到图形化界面的全面AI支持。最具代表性和实用性的组件包括:Azure OpenAI Services、Azure AI Services以及Azure AI Studio。每个组件在不同的层次上为开发者提供了灵活的开发支持,能够加速AI应用的开发与部署。Azure AI服务和Azure AI Studio作为微软Azure AI生态系统的核心组成部分,分别为不同的开发需求提供了强大的支持。原创 2025-01-26 21:47:05 · 909 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十) AI公平性
AI公平性是构建公正、无偏见AI系统的关键,它涉及技术、社会、法律等多个层面。通过借助Azure AI平台的工具和解决方案,我们可以在AI系统开发、评估、部署等各个环节中确保公平性。未来,我们仍然需要继续努力,在技术和社会层面共同推动AI公平性的实现。通过本文的指导,您不仅可以深入了解AI公平性的重要性,还能在Azure AI-102认证中掌握相关的知识和技能,为构建更加公平、透明的AI系统奠定基础。原创 2025-01-21 18:08:46 · 911 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十一) AI的可靠性与安全性
通过严格的测试、完善的风险管理和持续的安全保障,我们能够构建更加可靠、安全的AI解决方案。无论是🚗 自动驾驶、🏥 医疗诊断还是其他应用领域,只有确保AI系统的可靠性和安全性,才能真正实现AI技术的巨大潜力。本篇文章将深入探讨如何通过严格的测试、有效的风险管理、以及技术和运营层面的安全措施,确保AI系统的可靠性与安全性。AI系统的开发者应当进行定期的风险评估,对可能影响系统可靠性的潜在风险进行识别和分析。AI技术的应用领域非常广泛,但某些领域由于其对安全性和可靠性的高要求,尤其需要严格的控制和管理。原创 2025-01-22 21:32:45 · 977 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十四) AI的问责制
AI问责制指的是在人工智能的开发、部署和使用生命周期中,通过明确责任主体、确保过程中决策可被追踪、解释和纠正,从而对AI行为负责的一整套原则与机制。这不仅仅是一个技术话题,还涵盖了伦理、法律、社会多重层面。对于备考的同学来说,理解“AI问责制”就是理解“负责任AI”中的核心环节。当AI系统出现失误或引发争议时,谁来承担责任,怎样承担?小结:AI问责制的本质在于让AI系统的每个决策环节都能在事前有规划、事中可监督、事后能追责,构建更安全、更可信的AI生态。AI问责制是AI生态健康发展的“压舱石”。原创 2025-01-23 21:16:56 · 775 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十五) Azure AI 服务概述
Azure AI 服务是微软推出的一套完全托管(Managed)、无服务器(Serverless)并提供多种 AI 能力的云平台基础服务。它将语音(Speech)、视觉(Vision)、语言(Language)以及决策(Decision)等多类别的人工智能功能统一整合在一起,让开发者不必再为部署独立模型或管理底层模型基础设施而费时费力。在传统的“认知服务(Cognitive Services)”基础上,Azure AI 服务通过更新版的统一管理平台与统一密钥。原创 2025-01-23 21:27:07 · 891 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (二十九) Azure AI 服务容器的设置与测试
Azure AI 服务容器将 Azure 认知服务或机器学习模型封装为 Docker 镜像,使您能够在支持容器的平台上运行这些服务。借助容器技术,您可以在本地、云端或边缘设备上轻松部署和运行 AI 模型,统一化的开发环境大大降低了环境配置和依赖管理的复杂度。Azure AI 服务容器的优势:通过 Docker 容器封装,您可以在任何支持容器的平台(如本地、云端或边缘设备)上运行 AI 服务。统一的开发、测试和生产环境,消除不同环境之间的不一致性,避免了因环境差异带来的问题。原创 2025-01-25 23:22:47 · 1029 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (三十一) Azure OpenAI Service
Azure OpenAI Service是微软与OpenAI合作推出的一项云服务,旨在为企业和开发者提供接入OpenAI先进语言模型(如GPT-3、GPT-4等)的能力。通过此服务,企业能够无缝集成OpenAI的大型语言模型,并利用Azure平台的强大基础设施来进行高效、安全的部署和管理。在这项服务的帮助下,企业能够利用自然语言处理技术来增强自身的产品与服务,涵盖从智能客服到内容生成、数据分析等多个应用场景。原创 2025-01-26 22:03:21 · 786 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (三十二) Azure OpenAI Studio
Azure OpenAI Studio 是 Microsoft Azure 生态系统中的一部分,专门用于管理和应用 OpenAI 提供的先进语言模型(LLMs)。✅界面友好:适合初学者和有经验的开发者,无需复杂的配置。🚀访问 OpenAI 模型:支持 GPT-4 Turbo、GPT-3.5 和 DALL·E 等模型。☁️便捷的部署方式:可以直接在 Azure 云端使用,无需本地安装。🔒安全性:符合企业级安全和合规性标准。原创 2025-01-27 19:37:29 · 991 阅读 · 0 评论 -
Azure AI-102 认证全攻略: (三十六) 在Azure中部署LLM到Web App
本篇文章将详细介绍如何使用 Azure 平台来部署一个基于 GPT-3.5 Turbo 的 LLM 到 Web App 中,并结合 AI-102 认证考试的考点,对整个流程进行深入的剖析和实践指导。本文旨在帮助你从零开始,一步步完成 LLM 的云端部署,同时给出相应的维护、性能优化和安全考量,使你在 AI-102 认证道路上如虎添翼。原创 2025-01-30 22:27:44 · 1089 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(七)监督学习与无监督强化学习
人工智能学习方法分为许多不同的范式,最常见的包括监督学习、无监督学习和强化学习。在本文中,我们将重点讨论监督学习与无监督强化学习,理解这两者的特点和应用。本文深入探讨了监督学习与无监督强化学习的核心概念、应用场景,并介绍了如何在Azure AI平台上实现这些学习方法。无论你是在学习Azure AI基础认证(AI-900)考试,还是希望将机器学习应用于实际项目中,理解这些基本概念和方法对于成功至关重要。通过本文,你应该能够清晰地掌握监督学习与无监督强化学习的区别与联系,并能够在Azure平台上进行实践操作。原创 2025-01-04 14:27:15 · 926 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(八)神经网络与深度学习
神经网络和深度学习技术已经成为推动人工智能发展的重要力量。它们通过模拟人类大脑的结构和功能,能够有效地学习和处理复杂的模式。掌握神经网络的基本概念、前向传播与反向传播算法、激活函数等核心技术,不仅有助于你在**Azure AI基础认证(AI-900)**考试中取得好成绩,也为你未来在AI领域的深入学习奠定了坚实的基础。原创 2025-01-04 15:35:19 · 750 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(九)GPU
GPU最初设计用于加速图形渲染,特别是在3D图形和游戏中。然而,随着机器学习和深度学习任务的日益复杂,GPU逐渐成为加速这些任务的核心硬件之一。现代GPU不仅可以高效地渲染高分辨率图像和视频,还能进行大规模并行计算,是深度学习、神经网络和大数据处理不可或缺的部分。GPU,或图形处理单元,是一种专门设计用于执行图形计算任务的硬件。与CPU(中央处理单元)相比,GPU包含更多的核心,能够同时处理大量数据,因此特别适合并行计算任务。原创 2025-01-04 15:41:49 · 968 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(十)CUDA
NVIDIA是全球领先的图形处理单元(GPU)制造商。作为硬件解决方案提供商,NVIDIA不仅在游戏领域占据主导地位,更在人工智能和专业计算领域扮演着至关重要的角色。其产品涵盖从个人消费级显卡到为数据中心、超级计算机和AI系统设计的高端GPU,推动了深度学习、科学计算、图形渲染等领域的技术突破。游戏市场的主导者:NVIDIA的GeForce系列GPU在游戏市场广受欢迎,极大提升了游戏图形渲染的效率和画质。专业计算领域的创新先锋:NVIDIA的Quadro和Tesla。原创 2025-01-04 15:48:28 · 793 阅读 · 0 评论 -
Azure基础认证(AI-900)完全指南:从入门到考试通过(十一)ML Pipeline
ML Pipeline 是一组按照特定顺序执行的机器学习任务,通常包括数据预处理、特征工程、模型训练、模型评估、超参数调优、模型部署等多个环节。流水线的设计使得每个步骤都可以独立进行优化和调整,同时确保模型开发过程中的各项任务自动化和标准化。数据标注与预处理特征工程模型训练与评估超参数调优模型部署与推理机器学习流水线从数据标注到模型推理部署的每一个环节都至关重要。随着技术的发展,流水线的复杂度会逐渐增加,但它的基本框架和流程将始终保持不变。原创 2025-01-04 15:55:33 · 677 阅读 · 0 评论