
人工智能在天文学的应用
文章平均质量分 98
我们的目标是星辰大海
Liudef06小白
深耕Java后端开发,精通高并发架构设计与性能优化,熟练运用Spring Boot/Cloud等框架。
核心技能
基础设施:MySQL/Oracle数据库调优、Nginx负载均衡、Docker容器化部署、Jenkins持续集成
AI技术栈:
• AIGC应用:文生图领域LoRA模型微调实战经验
• 大模型:精通DeepSeek、通义千问/万象等模型微调与RAG增强检索
• 智能体开发:具备企业级智能助手系统开发能力
专注于将AI技术与后端架构融合,输出云原生×AI解决方案落地实践。持续分享【云部署技巧】与【大模型开发笔记】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
中国天文大模型创新:FALCO时域光变、天一大模型与多模态突破
中国天文大模型取得重要突破,FALCO时域光变模型、天一大模型等创新成果引领"AI+天文"研究新范式。FALCO模型基于Transformer架构,针对天文光变曲线数据特点进行优化设计,采用自监督学习在开普勒望远镜20万条数据上预训练,能高效分析恒星脉动、系外行星等时域天文现象。天一大模型等则专注于光谱分析等多模态任务,为处理郭守敬望远镜等产生的海量天文数据提供智能解决方案。这些创新模型推动天文研究从传统方法向AI驱动转型,为应对天文大数据挑战提供关键技术支撑。原创 2025-09-09 11:12:48 · 11216 阅读 · 11 评论 -
GeoGPT-R1-Preview:地球科学领域的革命性AI推理引擎
GeoGPT-R1-Preview是专为地球科学设计的大规模AI模型,基于Qwen2.5-72B架构优化,采用旋转位置编码(RoPE)和RMSNorm等先进技术,显著提升了处理地球科学长文本的能力。该模型通过专业化注意力机制和地球科学数据集的训练,能够有效理解地质学、气象学等领域的复杂概念和关系。架构上采用8192维隐藏层、64个注意力头和80层Transformer,支持32k上下文长度,为地球科学研究提供了强大的AI推理引擎。原创 2025-09-10 11:18:42 · 2213 阅读 · 3 评论 -
具身智能望远镜:AI如何重塑天文观测与自主科学发现
摘要: 具身智能望远镜通过融合AI、机器人技术与自动化观测,实现自主天文发现。其核心架构采用“感知-决策-执行”循环,集成多模态Transformer模型处理图像、传感器数据和自然语言指令,驱动智能决策。系统可动态调整观测策略(如指向、滤镜切换或对焦),显著提升效率并减少人力依赖。代码示例展示了状态编码与决策网络的设计,标志着天文观测从自动化迈向智能化的范式跃迁。(150字)原创 2025-09-09 15:59:50 · 4304 阅读 · 0 评论 -
人工智能革命下的宇宙探索:中国与国际在天文学领域的AI技术竞合
人工智能正在深刻变革天文学研究。面对FAST、LSST等大型巡天项目产生的海量数据(日均20TB),传统分析方法已难以应对。AI技术在星系分类、系外行星探测、光谱分析等领域展现出强大能力:1)基于ResNet的CNN模型实现高效星系分类;2)深度学习自动解析天体光谱物理信息;3)中国研究团队利用AI处理FAST数据发现新脉冲星候选体。国际上天文学与AI的跨学科融合已成趋势,各国正加强合作攻克宇宙探索难题。随着AI技术持续创新,人类对宇宙的认知边界将不断拓展。原创 2025-09-09 12:16:14 · 4691 阅读 · 1 评论 -
SpecCLIP:光谱大模型如何重塑天体物理学与多模态AI的未来
近年来,以我国LAMOST光谱巡天望远镜为代表,人类对银河系恒星开展了大规模系统性观测,为追溯银河系的形成历史提供了可能。然而,面对数千万乃至上亿的海量光谱数据,如何快速、高效地测量天体的物理参数,成为新时代恒星光谱学的重大挑战。生成式人工智能的兴起,为光谱研究带来了全新机遇。不同天体展现的丰富多样的光谱,宛如一门“光谱语言”,而大规模巡天积累的数据则为我们系统掌握这门语言提供了可能性。原创 2025-09-08 16:13:50 · 1906 阅读 · 0 评论 -
金乌-太阳大模型:天文AI的多模态革命与国家天文台的突破性创新
金乌-太阳大模型:天文AI的多模态创新 国家天文台怀柔基地研发的"金乌-太阳大模型"是天文研究领域的突破性进展。该模型基于Qwen2架构,创新性地融合了多模态数据处理能力,实现了太阳物理知识问答、图像识别分析和耀斑爆发预报三大核心功能。模型采用双编码器-单解码器设计,整合文本、图像和科学数据编码器,并引入专门的天文注意力机制,有效捕捉太阳活动的时空关联特征。在耀斑预报任务中,模型综合SDO卫星、怀柔基地望远镜和夸父一号卫星数据,达到领域领先的预测准确率。这一成果展现了AI在天文前沿研究中原创 2025-09-10 00:00:00 · 873 阅读 · 0 评论 -
天一大模型:AI与天文学交汇的宇宙级智能革命
天一大模型:AI赋能天文学研究的新范式 国家天文台与之江实验室联合研发的天一大模型(AstroOne)开创了人工智能与天文学融合的新时代。面对现代天文观测产生的海量数据(如FAST年20PB、SKA预计年600EB),传统处理方法已无法满足需求。AstroOne采用分层架构设计,整合文本、光谱和图像多模态数据处理能力,配备专门的天文词汇表和物理参数预测模块。该模型不仅能高效处理异构天文数据,还能进行跨模态分析和科学推理,显著提升了稀有天体识别、红移测量等任务的效率。作为首个专为天文学设计的大模型,Astro原创 2025-09-10 00:00:00 · 4094 阅读 · 0 评论 -
FALCO时域光变模型:天文时间序列分析的革命性突破
FALCO时域光变模型革新了天文时间序列分析,通过融合傅里叶变换、高斯过程和贝叶斯方法,有效解决了传统技术处理非平稳信号的局限。该模型将光变信号分解为趋势、周期和随机三个分量,采用分层贝叶斯框架整合先验知识与观测数据。关键技术包括自适应谐波分析(自动确定最佳谐波数量)和高斯过程回归(建模随机成分),显著提升了光变曲线分析的精度与效率。FALCO为研究恒星脉动、活动星系核等天体物理现象提供了革命性工具。原创 2025-09-09 00:00:00 · 1096 阅读 · 0 评论 -
人工智能与红外光谱联手揭秘宇宙冰成分:宇宙化学研究的新范式
宇宙冰主要存在于星际尘埃颗粒表面、原行星盘和寒冷天体上,其典型温度范围在10-100K之间。这些冰层是宇宙中有机分子形成和保存的重要场所,包含H₂O、CO、CO₂、CH₃OH、NH₃等关键分子,可能是生命前体物质在宇宙中分布和运输的载体。原创 2025-09-08 10:15:23 · 1757 阅读 · 3 评论