
算法层--Tensorflow
TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口.
路途…
Reading is a long investment.During this process, find the entertainment and enjoy life while treasure the present to compound interest.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【TensorFlow】onehot编码
def onehot(labels): '''one-hot 编码''' #数据有几行输出 n_sample = len(labels) #数据分为几类。因为编码从0开始所以要加1 n_class = max(labels) + 1 #建立一个batch所需要的数组,全部赋0. onehot_labels = np.zeros((n_sample, n_class))...转载 2019-08-09 14:36:39 · 964 阅读 · 0 评论 -
【TensorFlow】argmax、equal、accuracy.eval
1、tf.argmax(vector, 1)返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号。import tensorflow as tfimport numpy as np A = [[1,3,4,5,6]]B = [[1,3,4], [2,4,1]] ...原创 2019-08-09 14:02:36 · 549 阅读 · 0 评论 -
【TensorFlow】基础架构
TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性;TensorFlow的系统结构以C API为界,将整个系统分为「前端」和「后端」两个子系统:整的架构图如下:分层介绍 底层: 设备通信层, 负责网络通信和设备管理。 设备管理可以实现TF设备异构的特性,支持CPU、GPU、Mobile等不同设备。网络通信依赖gRPC通信协...转载 2019-08-09 11:18:36 · 1172 阅读 · 0 评论 -
【TensorFlow】FineTuning机制
为什么用FineTuning 使用别人训练好的网络模型进行训练,前提是必须和别人用同一个网络,因为参数是根据网络而来的。当然最后一层是可以修改的,因为我们的数据可能并没有1000类,而只有几类。把最后一层的输出类别和层的名称改一下。用别人的参数、修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning).也就是说,我们所拥有的...转载 2019-08-11 15:25:21 · 490 阅读 · 0 评论