
算法原理
文章平均质量分 92
liuliqun520
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
train_mono.sh kaldi介绍
1.首先是初始化GMM,使用的脚本是/kaldi-trunk/src/gmmbin/gmm-init-mono,输出是0.mdl和tree文件;$cmd JOB=1 $dir/log/init.log \ gmm-init-mono $shared_phones_opt "--train-feats=$feats subset-feats --n=10 ark:- ark:-|" $la...原创 2020-01-04 16:25:08 · 402 阅读 · 0 评论 -
kaldi 中train_mono.sh分析
$cmd JOB=1 $dir/log/init.log \ gmm-init-mono $shared_phones_opt "--train-feats=$feats subset-feats --n=10 ark:- ark:-|" $lang/topo $feat_dim \ $dir/0.mdl $dir/tree || exit 1;训练结果是生成0.mdl和tree...转载 2020-01-02 20:51:47 · 317 阅读 · 0 评论 -
面试L0,L1,L2范数
在深度学习中,监督类学习问题其实就是在规则化参数同时最小化误差。最小化误差目的是让模型拟合训练数据,而规则化参数的目的是防止模型过分拟合训练数据。参数太多,会导致模型复杂度上升,容易过拟合,也就是训练误差小,测试误差大。因此,我们需要保证模型足够简单,并在此基础上训练误差小,这样训练得到的参数才能保证测试误差也小,而模型简单就是通过规则函数来实现的。规则化项可以是模型参数向量的范数。...转载 2019-06-20 22:25:19 · 386 阅读 · 0 评论 -
MFCC梅尔倒谱系数
MFCC梅尔倒谱系数阅读数:7386MFCC梅尔倒谱系数是说话人识别、语音识别中最为常用的特征。我曾经对这个特征困惑了很久,包括为什么步骤中要取对数,为什么要最后一步要做DCT等等,以下将把我的理解记录下来,我找到的参考文献中最有价值的要数【1】了。是CUM一个教授做的PPT。整个流程如下:时域的波形图如下图1. 时域波形图第一步获得语谱图,语谱图是一个非常有力的工具,因为人耳就是进行的频率分析。...转载 2018-06-08 14:18:58 · 1176 阅读 · 0 评论 -
梅尔频率倒谱系数(MFCC)
语音信号处理之(四)梅尔频率倒谱系数(MFCC)[email protected]://blog.csdn.net/zouxy09 这学期有《语音信号处理》这门课,快考试了,所以也要了解了解相关的知识点。呵呵,平时没怎么听课,现在只能抱佛脚了。顺便也总结总结,好让自己的知识架构清晰点,也和大家分享下。下面总结的是第四个知识点:MFCC。因为花的时间不多,所以可能会有不少说的不妥的地...转载 2018-06-01 15:31:42 · 954 阅读 · 0 评论 -
mfcc
MFCC(Mel-frequency cepstral coefficients):梅尔频率倒谱系数。梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率成非线性对应关系。梅尔频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。主要用于语音数据特征提取和降低运算维度。例如:对于一帧有512维(采样点)数据,经过MFCC后可以提取出最重要的40维(一般而言)数据同时也达到了将...转载 2018-06-01 15:22:50 · 7216 阅读 · 2 评论 -
Fully Convolutional Networks for semantic Segmentation(深度学习经典论
Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)摘要卷积网络在特征分层领域是非常强大的视觉模型。我们证明了经过端到端、像素到像素训练的卷积网络超过语义分割中最先进的技术。我们的核心观点是建立“全卷积”网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出。我们定义并指定全卷积网络的空间,解释它们在空间范围内de...转载 2018-05-31 20:58:55 · 632 阅读 · 0 评论 -
The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)
The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)阅读数:2582 Introduction 本文主要总结了卷积神经网络在机器视觉领域的重要发展及其应用。我们将介绍几篇重要的公开发表的论文,讨论它们为何重要。前一半的论文(AlexNet到ResNet)将主要涉及整体系统架构的发展和...转载 2018-05-31 20:56:20 · 228 阅读 · 0 评论 -
语音识别dome
耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为: MFCC在一定程度上模拟了...转载 2018-05-26 19:48:21 · 485 阅读 · 0 评论 -
mfcc特征提取
下面总结的是第四个知识点:MFCC。因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正。谢谢。 在任意一个Automatic speech recognition 系统中,第一步就是提取特征。换句话说,我们需要把音频信号中具有辨识性的成分提取出来,然后把其他的乱七八糟的信息扔掉,例如背景噪声啊,情绪啊等等。 搞清语音是怎么产生的对于我们理解语音有很大帮助。人通过声...转载 2018-05-26 17:26:09 · 1586 阅读 · 0 评论 -
一文读懂隐马尔科夫
什么是熵(Entropy)简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度。熵越大,系统越无序,意味着系统结构和运动的不确定和无规则;反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态。熵的中文意思是热量被温度除的商。负熵是物质系统有序化,组织化,复杂化状态的一种度量。熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的...转载 2018-05-06 21:36:17 · 254 阅读 · 0 评论 -
深度学习:神经网络中的前向传播和反向传播算法推导
1. 神经网络这是一个常见的神经网络的图:这是一个常见的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,当我们输入x1,x2,x3等数据时,通过隐含层的计算、转换,输出你的期望,当你的输入和输出是一样的时候,成为自编码模型(Auto-Encoder),而当你输入和输出是不一致的时候,也就是我们常说的人工神经网络。2. 如何计算传播首先我们先构建...原创 2018-04-21 22:27:36 · 349 阅读 · 0 评论 -
各类回归问题总结
回归问题的条件/前提:1) 收集的数据2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数。然后利用这个模型去预测/分类新的数据。1. 线性回归假设 特征 和 结果 都满足线性。即不大于一次方。这个是针对 收集的数据而言。收集的数据中,每一个分量,就可以看做一个特征数据。每个特征至少对应一个未知的参数。这样就形成了一个线性模型函数,向量表示形式:这个就是一个组合问题,已...转载 2018-04-21 20:02:18 · 5872 阅读 · 1 评论 -
目标函数、损失函数、代价函数
目标函数、损失函数、代价函数http://www.cnblogs.com/Belter/p/6653773.html注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解...转载 2018-04-21 19:31:48 · 4558 阅读 · 0 评论 -
机器学习中的目标函数、损失函数、代价函数有什么区别
参考知乎:https://www.zhihu.com/question/52398145基本概念:损失函数:计算的是一个样本的误差代价函数:是整个训练集上所有样本误差的平均目标函数:代价函数 + 正则化项原理:首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function)。举个例子解释一下:(图片...原创 2018-04-21 19:28:09 · 5818 阅读 · 1 评论 -
标量对矩阵求导
标量对矩阵求导矩阵求导的技术,在统计学、控制论、机器学习等领域有广泛的应用。鉴于我看过的一些资料或言之不详、或繁乱无绪,本文来做个科普,分作两篇,上篇讲标量对矩阵的求导术,下篇讲矩阵对矩阵的求导术。本文使用小写字母x表示标量,粗体小写字母表示向量,大写字母X表示矩阵。首先来琢磨一下定义,标量f对矩阵X的导数,定义为,即f对X逐元素求导排成与X尺寸相同的矩阵。然而,这个定义在计算中并不好用,实用上的...原创 2018-04-20 23:05:03 · 8725 阅读 · 4 评论 -
矩阵求导
转自:http://blog.sina.com.cn/s/blog_4a033b090100pwjq.html求导公式(撇号为转置):Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A'乘积的导数d(...转载 2018-04-20 22:56:21 · 324 阅读 · 0 评论