DeepKE 使用教程(一)

一、Anaconda 创建虚拟环境

1、使用anaconda创建虚拟环境,进入虚拟环境

conda create -n deepke python=3.8
​
conda activate deepke

2、关机后如果忘记自己创建的虚拟环境,可通过以下命令查询:

conda info --envs
conda info --e (也可以)

3、激活虚拟环境

windows:
activate deepke
​
linux mac :
source activate deepke 

4、查看当前python的版本

python --version

5、结束当前虚拟环境,进入默认环境

Windows:
deactivate deepke
mac:
conda deactivate
source deactivate

6、删除虚拟环境

conda env remove -n deepke
二、配置wandb

https://wandb.ai/ 上注册账号,并新建一个project,取一个名字,比如:deepke-ner-official-demo

打开 https://wandb.ai/authorize 获取 API key

运行 wandb init,输入刚获取的 API key 和创建的project

项目运行后可以显示资源使用情况

### DeepKE Python 使用教程 #### 安装依赖库 为了使用 DeepKE 工具,首先需要安装必要的依赖项。可以通过 pip 安装这些依赖: ```bash pip install deepke torch transformers datasets ``` #### 初始化 DeepKE 实例 创建并初始化个用于处理特定任务(如命名实体识别 NER)的 DeepKE 对象实例。 ```python from deepke import DeepKE model = DeepKE(task='ner', model_name_or_path="bert-base-chinese") ``` #### 加载数据集 准备训练和测试所需的数据文件,并通过 `load_dataset` 方法加载到内存中以便后续操作[^2]。 ```python dataset = model.load_dataset('path/to/data') ``` #### 配置参数与预处理 设置超参数以及执行任何必需的数据前处理工作,比如分词、编码转换等。 ```python train_config = { 'batch_size': 8, 'learning_rate': 5e-5, } processed_data = model.preprocess(dataset, **train_config) ``` #### 模型微调 利用已有的标注样本对模型进行进步优化调整,提高其针对具体应用场景下的性能表现。 ```python model.finetune(processed_data['train'], processed_data['val']) ``` #### 测试评估 完成上述步骤之后,在独立验证集合上运行预测函数来检验最终效果如何。 ```python predictions = model.predict(processed_data['test']) metrics = model.evaluate(predictions, processed_data['test_labels']) print(metrics) ``` #### 常见问题解答 当遇到错误提示 "CUDA out of memory" 时,这通常意味着 GPU 显存不足。解决方案包括减少批量大小(batch size),降低学习率(learning rate),或者尝试更小规模的基础模型(pre-trained models)。 如果发现模型收敛速度过慢,则可能是因为选择了不合适的学习率或者是正则化强度过大造成的。建议逐步减小小批次数量(batch sizes)的同时适当增加迭代次数(epoch numbers), 并且检查是否存在梯度消失现象(vanishing gradients). 对于多线程环境下报错的情况,可能是由于 PyTorch 的 DataLoader 设置不当引起的问题。确保 worker_init_fn 参数被正确配置以保证随机数种子的致性和可重复实验性(reproducibility).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小楼昨夜又东风Ace

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值