(深度学习记录)第P2周:CIFAR10彩色图片识别

这篇文章详细介绍了在Windows11环境下,使用PyTorch库构建一个基本的卷积神经网络(CNN)来处理CIFAR-10数据集进行图像分类的过程,包括数据预处理、模型定义、训练和验证的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的环境
  • 电脑系统:Windows 11
  • 编译器:Pycharm
  • 深度学习环境:Pytorch

代码及结果

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

train_ds = torchvision.datasets.CIFAR10('data',
                                      train=True,
                                      transform=torchvision.transforms.ToTensor(), # 将
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data',
                                      train=False,
                                      transform=torchvision.transforms.ToTensor(), # 将
                                      download=True)
batch_size = 32

train_dl = torch.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值