Squeeze-and-Excitation Networks
SENet
文章目录
论文结构
摘要: CNN空间维度上的特征分析有广泛研究;本文提出SE block调整通道特征;SE block获得的成绩
1. Introduction: 近期CN的研究是为了获得更好的特征表示;本文从通道维度研究更好的特征表示方法;提出SE block;SE block优点
2. Related Work: CNN经典模型罗列;网络搜索相关工作;注意力机制与门控机制相关工作
3. Squeeze-and-Excitation Blocks: SE block的内部操作
4. Model and computational Complexity: 模型复杂度计算
5. Experiments: 多个数据集上实验结果分析探讨
6. Ablation Study: 控制变量法进行一系列实验,验证最优SE block方式
7. Role of SE blocks: SE block的作用探讨
8. Conclusion
一、摘要核心
- 背景介绍:卷积神经网络的核心是卷积操作,其通过局部感受野的方式融合空间和通道维度的特征;针对空间维度的特征提取方法已被广泛研究
- 本文内容:本文针对通道维度进行研究,探索通道之间的关系,并提出SE block,它可自适应的调整通道维度上的特征
- 研究成果:SE block 课堆叠构成SENet,SENet在多个数据集上表现良好;SENet不仅可大幅度提升精度,同时仅需要增加少量的参数
- 比赛成绩
- 代码开源
二、Squeeze and Excitation
① Squeeze:Global Information Embedding
全局信息降维嵌入
squeeze操作:采用全局池化,将空间维度H和W压缩到1×1,利用1个像素来表示一个通道,实现低维嵌入
② Excitation:Adaptive Recalibration
自适应重构
公示(3)中,第一个全连接层的激活函数是ReLU,第二个全连接层激活函数为Sigmoid
超参数reduction ratio r控制第一个全连接层神经元个数,C/r 个,进而影响SE Block的参数量。减少计算量
关于r的有对比实验,经验值为16