论文笔记:主干网络——SENet

Squeeze-and-Excitation Networks

SENet

论文结构

摘要: CNN空间维度上的特征分析有广泛研究;本文提出SE block调整通道特征;SE block获得的成绩
1. Introduction: 近期CN的研究是为了获得更好的特征表示;本文从通道维度研究更好的特征表示方法;提出SE block;SE block优点
2. Related Work: CNN经典模型罗列;网络搜索相关工作;注意力机制与门控机制相关工作
3. Squeeze-and-Excitation Blocks: SE block的内部操作
4. Model and computational Complexity: 模型复杂度计算
5. Experiments: 多个数据集上实验结果分析探讨
6. Ablation Study: 控制变量法进行一系列实验,验证最优SE block方式
7. Role of SE blocks: SE block的作用探讨
8. Conclusion

一、摘要核心

  1. 背景介绍:卷积神经网络的核心是卷积操作,其通过局部感受野的方式融合空间和通道维度的特征;针对空间维度的特征提取方法已被广泛研究
  2. 本文内容:本文针对通道维度进行研究,探索通道之间的关系,并提出SE block,它可自适应的调整通道维度上的特征
  3. 研究成果:SE block 课堆叠构成SENet,SENet在多个数据集上表现良好;SENet不仅可大幅度提升精度,同时仅需要增加少量的参数
  4. 比赛成绩
  5. 代码开源

二、Squeeze and Excitation

① Squeeze:Global Information Embedding

全局信息降维嵌入

在这里插入图片描述

squeeze操作:采用全局池化,将空间维度H和W压缩到1×1,利用1个像素来表示一个通道,实现低维嵌入

② Excitation:Adaptive Recalibration

自适应重构
在这里插入图片描述

在这里插入图片描述

公示(3)中,第一个全连接层的激活函数是ReLU,第二个全连接层激活函数为Sigmoid

超参数reduction ratio r控制第一个全连接层神经元个数,C/r 个,进而影响SE Block的参数量。减少计算量

关于r的有对比实验,经验值为16

③ SE Block流程图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值