① ExFuse: Enhancing Feature Fusion for Semantic Segmentation
② Learning a Discriminative Feature Network for Semantic Segmentation
文章目录
宏观角度看待分割问题
微观角度(以像素为单位):每一个像素都对应一个具体类别
宏观角度(以每一个类为单位):将语义分割看做一个任务,将一致的语义标签分配给一类事物,而不是每个像素。按照这一角度,语义分割中就会存在类间不一致和类内不一致的问题。
SLAM 同步定位与建图:也称CML 即时定位与地图构建/ 并发建图与定位
把一个机器人放入未知环境中的未知位置,是否有办法让机器人一边移动一遍逐步描绘出此环境完全的地图。完全的地图是指不受障碍行进到房间可进入的每个角落。SLAM的意义就是实现机器人的自主定位和导航
论文结构
摘要——introduction——related work——approach——experience——conclusion——reference
一、摘要核心
① ExFuse
背景介绍: 现代语义分割框架通常使用特征融合的方式提升性能,但由于高级特征和低级特征之间存在差距,直接融合的效果并不是很好。
文章思想: 在低层特征中引入语义信息,在高层特征中引入细节信息后会使后续融合更有效。
文章亮点: 提出了ExFuse,用来弥补高低层之间的差距
模型评估: 在PASCAL VOC 2012数据集中得到87.9%的MLoU
② DFN
背景介绍: 现代语义分割算法会存在类内不一致和类间不一致的问题
算法组成: 提出了DFN网络,包括平滑网络和边界网络两部分
具体作用: 平滑网络用于解决类内不一致,通过引入注意力机制和全局平均池化选择更具代表性的特征;边界网络通过深度语义边界监督更好的区分双边特征
模型评估: 在PASCAL VOC 2012和Cityscapes数据集中得到了86.2%和80.3%的MIoU
二、引言和相关工作
① ExFuse 引言
-
现有主流分割框架的问题及相应解决方法
问题: 不加特征融合,恢复分辨率的时候效果不好
解决方案:使用U-Net的U型结构特征融合 -
详细说明本文思想
【低级特征 VS 高级特征】
低级特征是从神经网络的浅层获得的,富含空间信息比较多,空间信息分辨率比较高,所以高分辨率的特征=低级特征
高级特征是从神经网络的深层提取的特征,含语义信息比较多,这些高语义化的特征的分辨率比较多。