超详细||深度学习环境搭建记录cuda+anaconda+pytorch+pycharm

本文详细介绍了在Windows系统上搭建深度学习环境的步骤,包括安装NVIDIA显卡驱动,CUDA和cudnn,VisualStudio,Anaconda,PyCharm,以及PyTorch。还特别提到了如何创建和切换CUDA版本,并提供了安装YOLOv8进行训练的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文用来记录windows系统上深度学习的环境搭建,目录如下

一、安装显卡驱动

首先为装有NVIDIA gpu的电脑安装显卡驱动,如果安装过了,或者想使用cpu的,可以跳过这一步。(其实这一步可以跳过,因为显卡驱动好想和深度学习环境没什么关系,保险起见还是安装上吧)

1. 去官网下载对应的显卡驱动:官方驱动 | NVIDIA     

2. 完成下载,选择文件开始安装,直接解压在默认地址

3. 选择自定义安装选项,执行清洁安装(按情况选择)

4. 一直点下一步即可。

二、安装Visual Studio

可以跳过,但是很多深度学习环境需要用到,建议安装

1. 官网下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux (microsoft.com)

2. 选择python开发和c++桌面开发,开始安装

三、cuda+cudnn安装

1. 打开cmd,输入nvidia-smi查看GPU的CUDA版本,可以看到CUDA版本12.1,意味着只能安装小于12.1的CUDA版本。


CUDA Toolkit Archive | NVIDIA Developer2. 去网站下载适合的CUDA版本:CUDA Toolkit Archive | NVIDIA Developer

要根据两个条件选择:

  • 1. CUDA版本要小于上面的版本信息
  • 2. 先去pytorch官网Start Locally | PyTorch,看一眼自己需要的pytorch版本对应的CUDA版本

例如:pytorch1.12.0只支持CUDA10.2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值