本文用来记录windows系统上深度学习的环境搭建,目录如下
一、安装显卡驱动
首先为装有NVIDIA gpu的电脑安装显卡驱动,如果安装过了,或者想使用cpu的,可以跳过这一步。(其实这一步可以跳过,因为显卡驱动好想和深度学习环境没什么关系,保险起见还是安装上吧)
1. 去官网下载对应的显卡驱动:官方驱动 | NVIDIA
2. 完成下载,选择文件开始安装,直接解压在默认地址
3. 选择自定义安装选项,执行清洁安装(按情况选择)
4. 一直点下一步即可。
二、安装Visual Studio
可以跳过,但是很多深度学习环境需要用到,建议安装
1. 官网下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux (microsoft.com)
2. 选择python开发和c++桌面开发,开始安装
三、cuda+cudnn安装
1. 打开cmd,输入nvidia-smi查看GPU的CUDA版本,可以看到CUDA版本12.1,意味着只能安装小于12.1的CUDA版本。
CUDA Toolkit Archive | NVIDIA Developer2. 去网站下载适合的CUDA版本:CUDA Toolkit Archive | NVIDIA Developer
要根据两个条件选择:
- 1. CUDA版本要小于上面的版本信息
- 2. 先去pytorch官网Start Locally | PyTorch,看一眼自己需要的pytorch版本对应的CUDA版本
例如:pytorch1.12.0只支持CUDA10.2