使用飞桨完成深度学习任务的通用流程
-
数据集和数据处理
paddle.io.Dataset
paddle.io.DataLoader
paddlenlp.data -
组网和网络配置
paddle.nn.Embedding
paddlenlp.seq2vec
paddle.nn.Linear
paddle.tanh
paddle.nn.CrossEntropyLoss
paddle.metric.Accuracy
paddle.optimizer
model.prepare
-
网络训练和评估
model.fit
model.evaluate -
预测
model.predict
模型搭建
使用LSTMencoder
搭建一个BiLSTM模型用于进行句子建模,得到句子的向量表示。
然后接一个线性变换层,完成二分类任务。
paddle.nn.Embedding
组建word-embedding层ppnlp.seq2vec.LSTMEncoder
组建句子建模层paddle.nn.Linear
构造二分类器
- 除LSTM外,
seq2vec
还提供了许多语义表征方法,详细可参考:seq2vec介绍