hadoop的shuffle过程

本文详细阐述了MapReduce中的shuffle过程,从数据输入开始,经过map处理、分区、排序、combine函数,再到reduce阶段的合并、排序和处理,展示了整个数据传输和处理的完整流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mapreduce中shuffle过程是理解整个mapreduce数据传输的关键,整个流程大概如下:
数据输入–>map函数处理–>按照reduce个数/或者分区函数进行数据分区–>分区内的数据进行排序–>分区有序的map数据输出(数据可能存在于内存或者运行map任务机器的磁盘)–>combine函数处理(前提是数据处理满足交换律)–>每个分区combine后的有序数据------------------>输出到reduce端–>reduce合并来自各个map端的输入–>对本reduce要处理的数据进行排序–>有序的数据(可能放在内存也可能放在这个reduce机器所在的本地磁盘)–>reduce函数处理–>结果输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值